• 제목/요약/키워드: Fuzzy-D controller

검색결과 215건 처리시간 0.029초

스위치드 릴럭턴스 전동기의 가변속 구동을 위한 퍼지제어기 설계 (Design of Fuzzy Logic Controller for an Switched Reluctance Motor Variable Speed Drive)

  • 최재동;황영성;오성업;성세진
    • 전력전자학회논문지
    • /
    • 제4권3호
    • /
    • pp.240-248
    • /
    • 1999
  • 본 논문에서는 SRM의 가변속 구동을 위한 퍼지 논리제어기를 제안한다. SRM은 높은 비선형 특성을 갖으며 토크 출력을 극대화하기 위해 포화영역에서 동작한다. 거시적 제어와 미시적 제어를 갖는 퍼지 제어기를 포함하는 높은 비선형 SRM 구동 시스템을 모델링 하기 위한 체계적인 접근이 제시되었다. 속도변화와 외란의 동적 특성을 통해 폭넓은 동작 범위조건에 대한 SRM의 성능해석이 제시되었다. 퍼지제어기에 의해 구동되는 SRM 시스템은 그 장점을 나타내기 위해 종래의 제어기와 비교되었다. 제안된 퍼지제어기의 속도변화와 외란에 대한 동작을 확인하기 위해서 실험결과가 제시되었다.

  • PDF

무인반송 차량시스템의 정밀 추적제어 (Precise Tracking control of Automated Guided Vehicle System)

  • 신두진;허욱열
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권7호
    • /
    • pp.313-317
    • /
    • 2001
  • This paper proposed a fuzzy logic cross coupled controller which can enhance the path tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV follows the guide path, it cannot be avoid the deviation from the path due to the inevitable error and the deviation must be corrected. Optically guided AGV used in industrial area is controlled by On-Off controller generally, the experimental AGV has three optical sensors in front body. In this structure, we could not know the leaving distance accurately and steering angle from the guided line, so AGV could not be controlled properly with conventional controller in the case of increasing or decreasing velocity. If we mount additional sensors the AGV, we could know the leaving distance and steering angle from the guided line and proper error compensating methode can be applied. But because cost of sensors are high, the cost of total system is increasing. So, in this paper, to improve the tracking performance of AGV which has the minimum number of sensors and fuzzy logic cross coupled controller is proposed. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어 (Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator)

  • 김현식;박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권8호
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어 (Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller)

  • 김중관;박병상;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권2호
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법 (Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach)

  • 추준욱;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

Takagi-Sugeno Fuzzy Model-based Iterative Learning Control Systems: A Two-dimensional System Theory Approach

  • Chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.169.3-169
    • /
    • 2001
  • This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...

  • PDF

안정 적응 퍼지 제어기를 이용한 박판 주조 공정에서의 용강 높이 제어 (Molten steel level control of strip casting process using stable adaptive fuzzy control scheme)

  • 주문갑;이대성;김윤하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1929-1931
    • /
    • 2001
  • An adaptive fuzzy logic controller to regulate molten steel level in the strip casting process is presented, where parameters of fuzzy controllers are adapted stably by using Lyapunov-stability theory and a switching controller is used together to deal with the approximation error of fuzzy logic system. The level error is proven to converge to zero asymptotically. In the simulation, the clogging/unclogging of a stopper nozzle is considered and overcome by the proposed controller. Robustness to uncertainty is shown to be superior to conventional PI controller.

  • PDF

선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어 (T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제59권1호
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.