A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.
Ship's collision avoidance is a skill that masters of merchant marine vessels have acquired through years of experience and that makes them feel at ease to guide their ship out from danger quickly compared to inexperienced officers. Case based reasoning (CBR) uses the same technique in solving tasks that needs reference from variety of situations. CBR can render decision-making easier by retrieving past solutions from situations that are similar to the one at hand and make necessary adjustments in order to adapt them. In this paper, we propose to utilize the advantages of CBR in a support system for ship's collision avoidance while using fuzzy algorithm for its retrieval of similar navigational situations, stored in the casebase, thus avoiding the cumbersome tasks of creating a new solution each time a new situation is encountered. There will be two levels within the Fuzzy-CBR. The first level will identify the dangerous ships and infer the new case. The second level will retrieve cases from casebase and adapt the solution to solve for the output. While CBR's accuracy depends on the efficient retrieval of possible solutions to be adapted from stored cases, fuzzy algorithm will improve the effectiveness of solving the similarity to a new case at hand.
Ship's collision avoidance is a skill that masters of merchant marine vessels have acquired through years of experience and that makes them feel at ease to guide their ship out from danger quickly compared to inexperienced officers. Case based reasoning(CBR) uses the same technique in solving tasks that needs reference from variety of situations. CBR can render decision-making easier by retrieving past solutions from situations that are similar to the one at hand and make necessary adjustments in order to adapt them. In this paper, we propose to utilize the advantages of CBR in a support system for ship's collision avoidance while using fuzzy algorithm for its retrieval of similar navigational situations, stored in the casebase, thus avoiding the cumbersome tasks of creating a new solution each time a new situation is encountered. There will be two levels within the Fuzzy-CBR. The first level will identify the dangerous ships and index the new case. The second level will retrieve cases from casebase and adapt the solution to solve for the output. While CBR's accuracy depends on the efficient retrieval of possible solutions to be adapted from stored cases, fuzzy algorithm will improve the effectiveness of solving the similarity to a new case at hand.
Park, Gyei-Kark;Kim, Woong-Gyu;Benedictos, John Leslie RM
한국지능시스템학회논문지
/
제17권3호
/
pp.390-396
/
2007
Fuzzy-CBR Collision Avoidance Support System is a system that finds a solution from past knowledge retrieved from the database and adapted to a new situation. Its algorithm has resulted to an adapting a solution for a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new environment and use them as inputs, for a ship collision avoidance support system., Similarity will be obtained through document articulation and using abstraction levels. A conceptual model of a maneuvering situation will be built using these ontologies.
We have proposed Fuzzy-CBR to find a solution from past knowledge retrieved from the database and adapted to a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology fur identifying the concepts involved in a new case, used as inputs, for a ship collision avoidance support system and in solving for similarity through document articulation and abstraction levels. These ontologies will be used to build a conceptual model of a maneuvering situation.
최근 채권의 상환 및 이자의 확실성 정도를 측정하고 연관된 상대적인 위험의 정도를 나타내는 채권등급 평가의 중요성이 대두되고 있다. 초기의 대다수 선행 연구들에서는 기업의 채권 등급예측을 위하여 통계적 기법이 많이 사용되었으나, 많은 연구들에 의해 그 우수성이 보고되고 있는 사례기반 추론 등 인공지능 기법들이 통계모형의 대안으로 제시되어지고 있다. 사례기반 추론에서는 과거의 사례들이 지식으로 표현되고 해결 방법으로 사용된다. 유용한 사례기반 시스템을 구축하기 위해서 시스템의 지식베이스를 구축할 사례들을 인간의 정보처리 과정과 유사한 방법으로 표현하는 것이 중요하다. 본 논문은 실제 세계의 애매모호한 사례들을 다루는데 적절한 퍼지집합개념을 사례기반 추론과 결합하는 통합 방법론을 제시하고자 한다. 퍼지집합이론은 인간이 의사결정시 사용하는 유사한 자연스러운 언어를 수학적으로 변환할 수 있게 해주는 인공지능 기법이다.
Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.
사례 기반 추론(Case-Based Reasoning)은 새로운 문제를 해결하기 위해 유사한 기존 문제를 추출하여 그 해결과정을 사용한다. 그러므로, 기존의 문제와의 유사성을 얼마만큼 잘 판별하는가가 매우 중요한 관건이다. 연구된 유사성 판단 방법으로는 퍼지 소속 함수(Fuzzy membership function)를 이용하여 사례마다 각 클래스에 대한 소속 함수 값을 주는 방법이 있다. 이 방법은 퍼지 소속 함수를 어떻게 주는가에 따라 성능이 달라진다. 본 논문에서는 적당한 퍼지 소속 함수를 주기 위하여 Fuzzy C-Means를 사용하는 방법을 제안하였다. 이 방법은 각 클래스에 대한 소속 함수 값을 결정하는데 있어서 좀 더 전체적인 데이터 분포 정보를 이용할 수 있다.
The IEEE 802.11e medium access control (MAC) is an emerging standard to support Quality of Service (QoS). A HCCA (HCF controlled channel access) scheduler of the standard IEEE 802.11e is only efficient for flows with strict constant bit rate (CBR) characteristics. In this paper, we propose a new HCCA scheduling scheme that aims to be efficient for both CBR and VBR flows. The proposed scheme uses fuzzy queue length predictions to tune its time allocation to stations. We present a set of simulations and provide performance comparisons with the reference HCCA scheduler.
In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.