• 제목/요약/키워드: Fuzzy-CBR

검색결과 13건 처리시간 0.022초

A Hybrid Approach Using Case-based Reasoning and Fuzzy Logic for Corporate Bond Rating

  • Kim, Hyun-jung;Shin, Kyung-shik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.474-483
    • /
    • 2003
  • A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.

  • PDF

Ship's Collision Avoidance Support System Using Fuzzy-CBR

  • Park, Gyei-Kark;Benedictos John Leslie RM.
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.635-641
    • /
    • 2006
  • Ship's collision avoidance is a skill that masters of merchant marine vessels have acquired through years of experience and that makes them feel at ease to guide their ship out from danger quickly compared to inexperienced officers. Case based reasoning (CBR) uses the same technique in solving tasks that needs reference from variety of situations. CBR can render decision-making easier by retrieving past solutions from situations that are similar to the one at hand and make necessary adjustments in order to adapt them. In this paper, we propose to utilize the advantages of CBR in a support system for ship's collision avoidance while using fuzzy algorithm for its retrieval of similar navigational situations, stored in the casebase, thus avoiding the cumbersome tasks of creating a new solution each time a new situation is encountered. There will be two levels within the Fuzzy-CBR. The first level will identify the dangerous ships and infer the new case. The second level will retrieve cases from casebase and adapt the solution to solve for the output. While CBR's accuracy depends on the efficient retrieval of possible solutions to be adapted from stored cases, fuzzy algorithm will improve the effectiveness of solving the similarity to a new case at hand.

Building of Collision Avoidance Algorithm based on CBR

  • Park Gyei-Kark;Benedictos John Leslie RM
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.39-44
    • /
    • 2006
  • Ship's collision avoidance is a skill that masters of merchant marine vessels have acquired through years of experience and that makes them feel at ease to guide their ship out from danger quickly compared to inexperienced officers. Case based reasoning(CBR) uses the same technique in solving tasks that needs reference from variety of situations. CBR can render decision-making easier by retrieving past solutions from situations that are similar to the one at hand and make necessary adjustments in order to adapt them. In this paper, we propose to utilize the advantages of CBR in a support system for ship's collision avoidance while using fuzzy algorithm for its retrieval of similar navigational situations, stored in the casebase, thus avoiding the cumbersome tasks of creating a new solution each time a new situation is encountered. There will be two levels within the Fuzzy-CBR. The first level will identify the dangerous ships and index the new case. The second level will retrieve cases from casebase and adapt the solution to solve for the output. While CBR's accuracy depends on the efficient retrieval of possible solutions to be adapted from stored cases, fuzzy algorithm will improve the effectiveness of solving the similarity to a new case at hand.

  • PDF

Conceptual Model for Fuzzy-CBR Support System for Collision Avoidance at Sea Using Ontology

  • Park, Gyei-Kark;Kim, Woong-Gyu;Benedictos, John Leslie RM
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.390-396
    • /
    • 2007
  • Fuzzy-CBR Collision Avoidance Support System is a system that finds a solution from past knowledge retrieved from the database and adapted to a new situation. Its algorithm has resulted to an adapting a solution for a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new environment and use them as inputs, for a ship collision avoidance support system., Similarity will be obtained through document articulation and using abstraction levels. A conceptual model of a maneuvering situation will be built using these ontologies.

Building a Conceptual Model Using Ontology for the Efficient Retrieval of Cases from Fuzzy-CBR of Collision Avoidance Support System

  • 박계각;;신성철;임남균;이미라
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.245-250
    • /
    • 2007
  • We have proposed Fuzzy-CBR to find a solution from past knowledge retrieved from the database and adapted to a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology fur identifying the concepts involved in a new case, used as inputs, for a ship collision avoidance support system and in solving for similarity through document articulation and abstraction levels. These ontologies will be used to build a conceptual model of a maneuvering situation.

  • PDF

퍼지집합이론과 사례기반추론을 활용한 채권등급예측모형의 구축 (A Hybrid Approach Using Case-Based Reasoning and Fuzzy Logic for Corporate Bond Rating)

  • 김현정;신경식
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.91-109
    • /
    • 2004
  • 최근 채권의 상환 및 이자의 확실성 정도를 측정하고 연관된 상대적인 위험의 정도를 나타내는 채권등급 평가의 중요성이 대두되고 있다. 초기의 대다수 선행 연구들에서는 기업의 채권 등급예측을 위하여 통계적 기법이 많이 사용되었으나, 많은 연구들에 의해 그 우수성이 보고되고 있는 사례기반 추론 등 인공지능 기법들이 통계모형의 대안으로 제시되어지고 있다. 사례기반 추론에서는 과거의 사례들이 지식으로 표현되고 해결 방법으로 사용된다. 유용한 사례기반 시스템을 구축하기 위해서 시스템의 지식베이스를 구축할 사례들을 인간의 정보처리 과정과 유사한 방법으로 표현하는 것이 중요하다. 본 논문은 실제 세계의 애매모호한 사례들을 다루는데 적절한 퍼지집합개념을 사례기반 추론과 결합하는 통합 방법론을 제시하고자 한다. 퍼지집합이론은 인간이 의사결정시 사용하는 유사한 자연스러운 언어를 수학적으로 변환할 수 있게 해주는 인공지능 기법이다.

  • PDF

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

CBR을 위한 FCM 기반 퍼지 소속 함수 결정 방법 (Decision Method of Fuzzy Membership Function based on FCM for CBR)

  • 연지현;김은주;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.15-17
    • /
    • 1999
  • 사례 기반 추론(Case-Based Reasoning)은 새로운 문제를 해결하기 위해 유사한 기존 문제를 추출하여 그 해결과정을 사용한다. 그러므로, 기존의 문제와의 유사성을 얼마만큼 잘 판별하는가가 매우 중요한 관건이다. 연구된 유사성 판단 방법으로는 퍼지 소속 함수(Fuzzy membership function)를 이용하여 사례마다 각 클래스에 대한 소속 함수 값을 주는 방법이 있다. 이 방법은 퍼지 소속 함수를 어떻게 주는가에 따라 성능이 달라진다. 본 논문에서는 적당한 퍼지 소속 함수를 주기 위하여 Fuzzy C-Means를 사용하는 방법을 제안하였다. 이 방법은 각 클래스에 대한 소속 함수 값을 결정하는데 있어서 좀 더 전체적인 데이터 분포 정보를 이용할 수 있다.

  • PDF

IEEE 802.11e WLAN을 위한 효율적인 퍼지 예측 기반 스케줄링 방법 (An Efficient Scheduling Scheme based on Fuzzy Prediction for IEEE 802.11e WLAN)

  • 허종만;이감록;김남훈;권욱현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1045-1046
    • /
    • 2006
  • The IEEE 802.11e medium access control (MAC) is an emerging standard to support Quality of Service (QoS). A HCCA (HCF controlled channel access) scheduler of the standard IEEE 802.11e is only efficient for flows with strict constant bit rate (CBR) characteristics. In this paper, we propose a new HCCA scheduling scheme that aims to be efficient for both CBR and VBR flows. The proposed scheme uses fuzzy queue length predictions to tune its time allocation to stations. We present a set of simulations and provide performance comparisons with the reference HCCA scheduler.

  • PDF

Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정 (The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks)

  • 황인식;이홍철
    • 대한산업공학회지
    • /
    • 제26권4호
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF