• 제목/요약/키워드: Fuzzy-C Means

검색결과 449건 처리시간 0.023초

국부 확률을 이용한 데이터 분류에 관한 연구 (A Study on Data Clustering Method Using Local Probability)

  • 손창호;최원호;이재국
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구 (A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device)

  • 이학민;엄종석
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.

스케일 공간 필터와 FCM을 이용한 컬러 영상영역화에 관한 연구 (A Study on the Color Image Segmentation Algorithm Based on the Scale-Space Filter and the Fuzzy c-Means Techniques)

  • 임영원;이상욱
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1548-1558
    • /
    • 1988
  • In this paper, a segmentation algorithm for color images based on the scale-space filter and the Fuzzy c-means (FCM) techniques is proposed. The methodology uses a coarse-fine concept to reduce the computational burden required for the FCM. The coarse segmentation attempts to segment coarsely using a thresholding technique, while a fine segmentation assigns the unclassified pixels by a coarse segmentation to the closest class using the FCM. Attempts also have been made to compare the performance of the proposed algorithm with other algorithms such as Ohlander's, Rosenfeld's, and Bezdek's. Intensive computer simulations has been done and the results are discussed in the paper. The simulation results indicate that the proposed algorithm produces the most accurate segmentation on the O-K-S color coordinate while requiring a reasonable amount of computational effort.

  • PDF

군집분석과 지역빈도해석을 이용한 확률강우량 추정에 대한 연구 (Study of Rainfall Quantile Estimation using Cluster Analysis and Regional Frequency Analysis)

  • 정영훈;정창삼;남우성;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.288-291
    • /
    • 2010
  • 본 연구에서는 한강유역 109개 지점의 강우관측소에서 관측된 지속기간별 연최대강우량을 산정하고 지역빈도해석을 적용하기 위하여 한강유역에 대하여 지역구분을 실시하였다. 지역구분은 군집분석 방법인 Ward 방법, 평균연결법, Fuzzy-c means 방법, Two-Step 방법을 적용하였으며 군집분석을 수행하기 위해서 한강유역의 지점별 기상학적 인자와 지형학적 인자를 이용하여 군집분석을 수행하였다. 그 중 Fuzzy-c means 방법을 이용한 지역구분이 적합한 것으로 나타났다. 또한 모든 지속기간에 대하여 적합성 척도를 산정한 결과 GLO 분포형이 적정분포형으로 나타났으며, 지역빈도해석 방법인 지수홍수법을 이용하여 산정한 확률강우량과 지점빈도해석으로 산정한 확률강우량과 비교하여 적용성을 판단하였다.

  • PDF

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.

퍼지 RBF 네트워크의 학습 성능 개선 (Learning Performance Improvement of Fuzzy RBF Network)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.369-376
    • /
    • 2006
  • 본 논문에서는 퍼지 RBF네트워크의 학습 성능을 개선하기 위하여 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 퍼지 RBF 네트워크를 제안한다. 제안된 학습 알고리즘은 일반화된 델타 학습 방법에 퍼지 C-Means 알고리즘을 결합한 방법으로, 중간층의 노드를 자가 생성하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하여 학습 성능을 개선한다. 제안된 RBF 네트워크의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 40개의 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크와 기존의 퍼지 RBF 네트워크 보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정 및 칼라영상분할 (A Setting of Initial Cluster Centers and Color Image Segmentation Using Superpixels and Fuzzy C-means(FCM) Algorithm)

  • 이정환
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.761-769
    • /
    • 2012
  • 본 논문에서는 슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정방법과 이를 사용한 칼라영상분할을 연구한다. 클러스터링을 이용한 대표적인 칼라영상분할 방법으로 Fuzzy C-menas (FCM) 알고리즘을 많이 사용한다. FCM은 하나의 데이터가 각 클러스터에 서로 다른 소속도를 갖도록 한다. 그러나 FCM은 초기값 설정에 따라 국부적인 수렴문제가 발생한다. 따라서 초기값 설정문제는 매우 중요한데 본 연구에서는 슈퍼픽셀을 이용하여 클러스터의 초기값을 구하는 방법을 제안한다. 슈퍼픽셀은 원 영상에서 특성이 비슷한 화소들의 묶음으로 표현되는데 먼저 원 영상으로부터 슈퍼픽셀을 구하고 이를 $La^*b^*$ 칼라특징공간에 투영하여 클러스터 초기값을 구한다. 제안방법에서 슈퍼픽셀의 수는 원영상의 화소 수보다 일반적으로 매우 적어서 클러스터 초기값 설정을 위한 고속처리가 가능하다. 제안된 알고리즘의 성능평가를 위해 다양한 칼라영상을 사용하여 컴퓨터 모의실험을 수행하였으며 실험결과 제안방법이 기존방법에 비해 영상분할 성능이 우수함을 알 수 있었다.

변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정 (Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm)

  • 윤후병;정성종;안동언;두길수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

퍼지 신경회로망을 이용한 영상분할 (Image Segmentation Using A Fuzzy Neural Network)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.313-318
    • /
    • 2000
  • Image segmentation is to divide an image into similar parts or objects. This paper presents a segmentation system which consists of a fuzzy neural network and a set of image processing filters. The fuzzy neural network does not need initialization of weights. Therefore it does not have the underutilization problem. This fuzzy neural network controls the size and number of clusters by the vigilance parameter instead of fixing the number of clusters at the initial stage. This fuzzy neural network does not require large amount of memory as in Fuzzy c-Means algorithm. Two satellite images were segmented using the proposed system. The segmented results show that the proposed system is better on segmenting images.

  • PDF