Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.
데이터 마이닝(Data Mining)이란 저장된 많은 양의 자료로부터 통계적 수학적 분석방법을 이용하여 다양한 가치 있는 정보를 찾아내는 일련의 과정이다. 데이터 클러스터링은 이러한 데이터 마이닝을 위한 하나의 중요한 기법이다. 본 논문에서는 Fuzzy C-Means 알고리즘을 이용하여 웹 사용자들의 행위가 기록되어 있는 웹 로그 데이터를 데이터 클러스터링 하는 방법에 관하여 연구하고자 한다. Fuzzv C-Means 클러스터링 알고리즘은 각 데이터와 각 클러스터 중심과의 거리를 고려한 유사도 측정에 기초한 목적 함수의 최적화 방식을 사용한다. 웹 로그 데이터의 여러 필드 중에서 사용자 IP, 시간, 웹 페이지 필드를 WLDF(Web Log Data for FCM)으로 가공한 후, 다차원 Fuzzy C-Means 클러스터링을 한다. 그리고 이를 이용하여 샘플 데이터와 임의의 데이터간의 유사 패턴 분석을 하고자 한다.
본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.
무선 센서 네트워크에서 중요한 문제 중 하나는 센서 노드들의 최적 배치, 즉 측정하고자 하는 지역을 모두 커버할 수 있는 최소 센서 노드 수를 산출하고 배치 위치를 결정하는 일이다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 제안한 Fuzzy C-Means 클러스터링을 이용하여 측정하고자 하는 지역에서의 최적의 노드 배치와 최소 노드의 수를 시뮬레이션을 통해 도출하였고, 실험을 통하여 검증하였다. 시뮬레이션은 3가지 타입의 2차원 지역을 모델로 하여 수행하였다. 모델링한 지역은 6M${\times}$10M의 직사각형, 50M${\times}$20M의 직사각형, 100M${\times}$80M의 ‘L’ 자 형태의 지역으로 하였으며, 각각 9개, 9개, 15개 노드의 위치를 결정하였다. 실제 실험결과 각 지역에 대해서 94.6%, 92.2%, 95.7%의 정확도를 가진 통신 연결을 확인할 수 있었다.
The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.
본 논문에서는, 강의 평가에 필요한 설문을 효과적이며 체계적으로 얻기 위한, 대표 문항 추출 방법을 비교하였다. 비교에 사용한 방법은 요인분석(Factor Analysis: FA), FCM(Fuzzy c-Means) 알고리즘과 군집분석(Cluster Analysis : CA) 등으로 이러한 방법들을 사용하여 고려할 수 있는 다양한 형태의 많은 문항들로부터 적은 수의 문항을 추출한다. 추출된 문항은 많은 수의 문항들이 형성하는 클러스터의 대표 문항을 이루고 있다. 이를 위해 여러 개의 설문지로부터 얻은 120 문항의 강의 평가서를 명지대학교 외 3 개 대학교 646명의 학생들에게 평가를 실시하여 데이터를 얻었는데 학생들은 주어진 문항에 대하여 "매우 그렇다", "그렇다", "보통이다", "그렇지 않다", "매우 그렇지 않다", 그리고 "해당 없다"까지의 6등급으로 응답하였다. 각 문항에 대한 학생들의 응답 성향을 분석하여 약 25문항을 추출하였다. 실험 결과 본 논문에서 비교 분석한 요인분석, FCM알고리즘과 군집분석 등의 기법은 매우 유사한 설문을 추출할 수 있었다.
클러스터링을 이용한 대표적인 영상 분할 방법으로 Fuzzy C-Means(FCM) 알고리즘을 많이 사용하는데, FCM은 영상의 공간을 픽셀 값이 비슷한 클러스터 영역으로 분할하므로 분할 시간이 많이 소요된다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 처리 속도 문제는 더욱 중요하다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 Otsu의 영상 히스토그램의 임계값과 FCM으로 영상을 분할하는 개선된 FCM(Improved FCM : IFCM) 알고리즘을 제안한다. 제안방법은 Otsu의 클래스 간의 분산을 최대화 시키는 임계값을 결정하여 FCM에 적용하고 영상을 분할하였다. IFCM은 기존의 FCM에 비해 영상 분할 시간을 단축시켜 성능이 향상되었음을 실험을 통해 보인다.
In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.
This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.
Journal of information and communication convergence engineering
/
제21권4호
/
pp.322-328
/
2023
The number of senior citizens with large bowel obstruction is steadily growing in Korea. Plain radiography was used to examine the severity and treatment of this phenomenon. To avoid examiner subjectivity in radiography readings, we propose an automatic segmentation method to identify fluid-filled areas indicative of large bowel obstruction. Our proposed method applies the Hough transform to locate suspicious areas successfully and applies the possibilistic fuzzy c-means unsupervised learning algorithm to form the target area in a noisy environment. In an experiment with 104 real-world large-bowel obstruction radiographs, the proposed method successfully identified all suspicious areas in 73 of 104 input images and partially identified the target area in another 21 images. Additionally, the proposed method shows a true-positive rate of over 91% and false-positive rate of less than 3% for pixel-level area formation. These performance evaluation statistics are significantly better than those of the possibilistic c-means and fuzzy c-means-based strategies; thus, this hybrid strategy of automatic segmentation of large bowel suspicious areas is successful and might be feasible for real-world use.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.