• Title/Summary/Keyword: Fuzzy-C Means

검색결과 449건 처리시간 0.023초

퍼지 규칙 최적화를 위한 유전자 알고리즘 (A genetic algorithm for generating optimal fuzzy rules)

  • 임창균;정영민;김응곤
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.767-778
    • /
    • 2003
  • 이 논문은 유전자 알고리즘을 이용한 최적의 퍼지 규칙을 만드는 방법을 제시한다. 퍼지 규칙은 첫 번째 단계에서 학습 데이터를 이용해 생성된다. 이 단계에서 퍼지 c-Means 군집화 알고리즘과 군집 유효성을 사용해 구조를 결정하고 퍼지 규칙 수가 되는 군집 수를 결정한다. 첫 번째 단계에서 구조가 결정되면 퍼지규칙의 매개변수들은 유전자 알고리즘을 이용해서 조율된다. 또한, 비대칭 가우시안 소속 함수를 위해 분산 매개변수는 좌ㆍ우값을 따로 관리하여 조율한다. 이 방법은 가중치와 분산 공간에서 유전자 알고리즘을 사용함으로서 전역 최소 쪽으로 수렴하도록 한다.

Fuzzy c-Logistic Regression Model in the Presence of Noise Cluster

  • Alanzado, Arnold C.;Miyamoto, Sadaaki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.431-434
    • /
    • 2003
  • In this paper we introduce a modified objective function for fuzzy c-means clustering with logistic regression model in the presence of noise cluster. The logistic regression model is commonly used to describe the effect of one or several explanatory variables on a binary response variable. In real application there is very often no sharp boundary between clusters so that fuzzy clustering is often better suited for the data.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계 (Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition)

  • 이승철;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.355-360
    • /
    • 2015
  • 본 논문에서는 필기체 숫자를 인식하기 위해 주성분 분석법(PCA) 기반 방사형 기저함수 신경회로망(pRBFNNs) 패턴 분류기를 설계한다. 제안된 패턴 분류기는 PCA를 이용한 데이터 전처리 단계와 pRBFNNs를 이용한 분류 단계로 구성된다. 전처리 단계에서는 PCA를 사용하여 주어진 데이터의 정보손실을 최소화한 특징데이터를 생성하고, 이를 분류 단계인 pRBFNNs의 입력으로 사용한다. 제안된 분류기의 조건부에서는 Fuzzy C-Means(FCM) 클러스터링 알고리즘으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 결론부에서는 최소자승법(LSE)을 사용하여 다항식 계수를 구하였다. 제안된 분류기의 성능평가를 위해 대표적인 필기체 숫자데이터인 MNIST 데이터를 사용하였으며, 제안된 분류기의 결과를 기존 다른 분류기들과 비교한다.

개선된 퍼지 클러스터 알고리즘을 이용한 블라인드 비선형 채널등화에 관한 연구 (A Study on Blind Nonlinear Channel Equalization using Modified Fuzzy C-Means)

  • 박성대;한수환
    • 한국멀티미디어학회논문지
    • /
    • 제10권10호
    • /
    • pp.1284-1294
    • /
    • 2007
  • 본 논문에서는 개선된 퍼지 클러스터(Modified Fuzzy C-Means: MFCM) 알고리즘을 이용하여 블라인드 비선형 채널등화기를 구현하였다. 이를 위해 제안된 MFCM은 기존의 유클리디언 거리 값 대신 Bayesian Likelihood 목적함수(fitness function)를 이용하여 채널의 출력으로 수신된 데이터들로부터 비선형 채널의 최적의 채널 출력 상태 값(optimal channel output states)을 추정한다. 이렇게 구해진 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터를 구성하고 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용하여 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우스 잡음을 추가한 데이터를 사용하여 하이브리드 유전자 알고리즘 (genetic algorithm(GA) merged with simulated annealing (SA): GASA)과 그 성능을 비교하였으며, 제안된 MFCM을 이용한 등화기가 GASA를 사용한 것 보다 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

비선형 블라인드 채널등화를 위한 퍼지 클러스터 알고리즘의 성능개선 (Performance Improvement on Fuzzy C-Means Algorithm for Nonlinear Blind Channel Equalization)

  • 박성대;한수환
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.382-388
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 개선된 퍼지 클러스터(Modified Fuzzy C-Means: MFCM) 알고리즘을 제안한다. 제안된 MFCM은 기존의 유클리디언 거리 값 대신 Bayesian Likelihood 목적함수(fitness function)를 이용하여 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태값(optimal channel output states)을 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적인 채널 상태(desired channel states) 벡터들을 구성하고 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우스 노이즈를 추가한 데이터를 사용하여 하이브리드 유전자 알고리즘 (GA merged with simulated annealing (SA): GASA)과 그 성능을 비교 하였으며, 제안된 MFCM을 이용한 등화기가 GASA를 활용한 것 보다 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

퍼지 클러스터링 기반의 국소평가 유전자 알고리즘 (Partially Evaluated Genetic Algorithm based on Fuzzy Clustering)

  • 유시호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1246-1257
    • /
    • 2004
  • 유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류 (Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques)

  • ;강명수;김철홍;김종면
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 최근 멀티미디어 정보가 급증함에 따라 콘텐츠 관리에 대한 요구도 함께 증가되고 있다. 이에 오디오 분할 및 분류는 멀티미디어 콘텐츠를 효과적으로 관리할 수 있는 대안이 될 수 있다. 따라서 본 논문에서는 동영상에서 취득한 오디오 신호를 분할하고, 분할된 오디오 신호를 음악, 음성, 배경 음악이 포함된 음성, 잡음이 포함된 음성, 묵음(silence)으로 분류하는 정확도가 높은 오디오 분할 및 분류 알고리즘을 제안한다. 제안하는 알고리즘은 오디오 분할을 위해 서포트 벡터 머신(support vector machine, SVM)을 이용하였다. 오디오 신호의 분류를 위해서는 분할된 오디오 신호의 특징을 추출하고 이를 퍼지 클러스터링 알고리즘(fuzzy c-means, FCM)의 입력으로 사용하여 각 계층으로 오디오 신호를 분류하였다. 제안하는 알고리즘의 평가는 분할과 분류에 대해 각각 그 성능을 평가하였으며, 분할 성능 평가는 정확도율(precesion rate)과 오차율(recall rate)을 이용하였으며, 분류 성능 평가는 정확성(classification accuracy)을 사용하였다. 또한 오디오 분할의 경우는 이진 분류기와 퍼지 클러스터링을 이용한 기존의 알고리즘과 그 성능을 비교하였다. 모의 실험 결과, 제안한 알고리즘의 분류 성능이 기존 알고리즘 보다 정확도율과 오차율 면에서 모두 우수하였다.

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.10-10
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.