• Title/Summary/Keyword: Fuzzy-Bayesian Network

Search Result 26, Processing Time 0.03 seconds

A Context-Aware System in Ubiquitous Environment (유비쿼터스 환경에서의 상황 인지 시스템 연구 활동 소개 도우미 - -)

  • 박지형;이승수;김성주;염기원;이석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1048-1052
    • /
    • 2004
  • The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This requires that information of the person and her preferences, liking, and habits are available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. The system architecture is composed of 4 domain models that can perform some pre-defined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian network to reason what information is suitable for user environment. Finally, we apply to agent based RGA(Research Guide Assistant).

  • PDF

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Fingerprinting Bayesian Algorithm for Indoor Location Determination (실내 측위 결정을 위한 Fingerprinting Bayesian 알고리즘)

  • Lee, Jang-Jae;Kwon, Jang-Woo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.888-894
    • /
    • 2010
  • For the indoor positioning, wireless fingerprinting is most favorable because fingerprinting is most accurate among the technique for wireless network based indoor positioning which does not require any special equipments dedicated for positioning. The deployment of a fingerprinting method consists of off-line phase and on-line phase and more efficient and accurate methods have been studied. This paper proposes a bayesian algorithm for wireless fingerprinting and indoor location determination using fuzzy clustering with bayesian learning as a statistical learning theory.

A Tour Guide System Based on a Context-Aware in Ubiquitous Environment (유비쿼터스 환경에서 상황인지 기반 문화재 답사도우미 시스템)

  • Park, Ji-Hyung;Lee, Seung-Soo;Kim, Sung-Ju;Lee, Seok-Ho;Yeom, Ki-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.365-374
    • /
    • 2006
  • The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This environment requires information such as the person, his/her preferences, and habits which is available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. Our system architecture is divided into 4 domain models such as context awareness, presentation, interface and inference domain. Each domain model can perform some predefined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian method in order to reason what is the suitable information for user. We show the possibility for the real application through applying the system to the TGA (Tour Guide Assistant) for Kyoungju historical site.

Pattern Recognition Methods for Emotion Recognition with speech signal

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.150-154
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.

Activity Recognition Using Sensor Networks

  • Lee Jae-Hun;Lee Byoun-Gyun;Chung Woo-Yong;Kim Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.197-201
    • /
    • 2006
  • In the implementation of a smart home, activity recognition technology using simple sensors is very important. In this paper, we propose a new activity recognition method based on Bayesian network (BN). The structure of the BN is learned by K2 algorithm and is composed of sensor nodes, activity nodes and time node whose state is quantized with reasonable interval. In the proposed method, the BN has less complexity and provides better activity recognition rate than the previous method.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.