• 제목/요약/키워드: Fuzzy-ARTMAP

검색결과 25건 처리시간 0.024초

Channel Equalization using Fuzzy-ARTMAP Neural Network

  • Lee, Jung-Sik;Kim, Jin-Hee
    • 한국통신학회논문지
    • /
    • 제28권7C호
    • /
    • pp.705-711
    • /
    • 2003
  • This paper studies the application of a fuzzy-ARTMAP neural network to digital communications channel equalization. This approach provides new solutions for solving the problems, such as complexity and long training, which found when implementing the previously developed neural-basis equalizers. The proposed fuzzy-ARTMAP equalizer is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capability of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of the proposed equalizer is compared with other neural net basis equalizers, specifically MLP and RBF equalizers.

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정 (Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART)

  • 이정헌;조정환;전기준
    • 전자공학회논문지SC
    • /
    • 제43권4호
    • /
    • pp.21-29
    • /
    • 2006
  • 본 논문에서는 혼합가스의 종류를 구분하고 농도를 추정하기 위하여 퍼지 ARTMAP 신경회로망과 퍼지 ART 신경회로망을 각각 사용하였다. 온도변환 구동방식의 반도체식 가스센서를 이용하여 $NH_3,\;H_2S$, 그리고 그들의 혼합가스에 대해서 데이터를 획득하였고, 데이터들을 제안한 패턴인식방법의 입력으로 사용하기 위해서 전 처리 과정을 통해 데이터들의 차원을 줄여주었다. 실험을 통해서 본 논문에서 사용한 방법이 이전의 다른 방법들과 비교하여 학습시간을 줄이면서 좀더 안정된 농도 추정 성능을 보여줌을 확인하였다.

음향 방출 신호와 질감 분석을 이용한 유도전동기의 베어링 복합 결함 검출 (Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis)

  • 장원철;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.55-62
    • /
    • 2014
  • 본 논문에서는 유도 전동기 결함 중 가장 많은 비중을 차지하는 베어링의 복합 결함을 검출하기 위해 음향 방출 신호와 이를 영상화하여 질감 분석을 이용한 결함 검출 방법을 제안한다. 영상화된 결함 신호가 갖는 엔트로피, 픽셀의 동질성 및 에너지 특징을 분석하고, 그레이-레벨 동시발생 행렬을 통해 영상의 에너지, 동질성 및 다양성의 세 가지 질감 특징을 추출한다. 추출된 세 가지 질감 특징을 퍼지-ARTMAP(Fuzzy-ARTMAP)의 입력으로 사용하여 베어링의 외륜-내륜, 내륜-롤러 및 외륜-롤러에 대한 복합 결함을 분류한다. 총 10회에 걸쳐 제안한 방법의 분류 성능을 평가한 결과, 100%의 분류 정확성을 보였다.

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

퍼지 ARTMAP에 의한 한글 차량 번호판 인식 시스템 설계 (Design of a Korean Character Vehicle License Plate Recognition System)

  • 웅성;최병재
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.262-266
    • /
    • 2010
  • Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.

반도체식 가스센서와 패턴인식방법을 이용한 혼합가스의 정량적 분석 (Quantitative analysis of gas mixtures using a tin oxide gas sensor and fast pattern recognition methods)

  • 이정헌;조정환;전기준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.138-140
    • /
    • 2005
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S$, $NH_3$ and their mixtures and to estimate their concentrations, respectively. Features are extracted from a micro gas sensor array operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed methods are shown to be fast in learning and accurate in concentration estimating. The results are compared with other methods and discussed.

  • PDF

혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상 (On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures)

  • 신중엽;조정환;전기준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

신경망의 스펙트럼 분석기를 이용한 패턴 인식 (Pattern Recognition Using Spectrum Analyzer and Neural Network)

  • 김남익;한수환;전도홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.211-214
    • /
    • 1996
  • This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.

  • PDF

퍼지기반 신경망모형을 이용한 대기행렬 검지 (Queue Detection using Fuzzy-Based Neural Network Model)

  • KIM, Daehyon
    • 대한교통학회지
    • /
    • 제21권2호
    • /
    • pp.63-70
    • /
    • 2003
  • 실시간 교차로의 대기행렬길이 검지는 지능형교통체계의 중요부분인 교통관제를 위해서 매우 중요하다. 특히 교통정보수집을 위한 영상기반 기술은 전통적인 루프검지기 또는 기타 타 검지기에 비하여 내재된 여러 이점 때문에 많은 연구가 진행되어 왔다. 그러나 현장 적용시 흔히 발생하는 영상에서의 잡음 및 주변 물체로부터 투영되는 음영 등에 의해 나타나는 차량의 오검지율을 줄이고 수집되는 교통정보의 신뢰도를 높이기 위해서는 보다 효과적인 알고리즘개발이 요구된다. 본 연구에서는 영상처리를 이용한 대기행렬길이 검지를 위한 알고리즘을 제시하였다. 실시간 데이터 수집 및 분석 그리고 패턴분석에 우수한 것으로 알려진 신경망 모형을 이용하였으며, 특히 시스템 신뢰성을 높이기 위하여 퍼지이론이 접목된 퍼지 뉴런모델인 Fuzzy ARTMAP을 모형에 도입하였다. 실험결과 본 연구에서 제시한 대기행렬 측정 방법은 매우 우수한 검지 능력을 보였으며, 대기행렬 검지뿐만 아니라 신뢰성 높은 차량검지 및 차종분류를 위해서도 활용할 수 있을 것으로 기대된다.