• Title/Summary/Keyword: Fuzzy transformation

Search Result 103, Processing Time 0.027 seconds

Simulation of Fuzzy Reliability Indexes

  • Dong, Yu-Ge;Chen, Xin-Zhao;Cho, Hyun-Deog;Kwon, Jong-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.492-500
    • /
    • 2003
  • By means of the transformation from the problem of fuzzy reliability to the problem of general reliability, a model for analyzing fuzzy reliability is introduced in this paper Because of the complexity of the Problem of the fuzzy reliability, generally speaking, the analytical equations for calculating fuzzy reliability indexes of machine part cannot be obtained in most cases. Therefore, in this paper, an approach is given wherein progressions are employed to calculate them, or a simulation approach is used to estimate them by expressing general reliability indexes as progressions. By utilizing the approach put forwards in the paper, the calculating quantity for analyzing the fuzzy reliability will be reduced : even substantially reduced sometimes. Some examples are taken to explain the feasibility of the model and a simulation approach.

Intelligent Digital Redesign Via Complete State-Matching (완벽한 상태정합을 이용한 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.276-278
    • /
    • 2006
  • In this paper, a complete solution to fuzzy-model-based digital redesign problem (IDR) for sampled-data nonlinear systems is presented, The term of intelligent digital redesign (IDR) is to design a digital fuzzy controller such that the sampled-data closed-loop fuzzy system is equivalent to the continuous-time closed-loop fuzzy system using the state matching, Its solution is simply obtained by linear transformation, Under the proposed sampled-data controller, the states of the sampled-data and continuous-time fuzzy system are completely matched at every sampling points.

  • PDF

Speaker Identification Using PCA Fuzzy Mixture Model (PCA 퍼지 혼합 모델을 이용한 화자 식별)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.

  • PDF

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

Static Output Feedback Control for Continuous T-S Fuzzy Systems (연속시간 T-S 퍼지 시스템에 대한 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.560-564
    • /
    • 2015
  • This paper presents a design method of a static output feedback controller for continuous T-S fuzzy systems via parallel distributed compensation (PDC). The existence condition of a set of static output feedback gains is represented in terms of linear matrix inequalities (LMIs). The sufficient condition presented here does not need any transformation matrices and equality constraints and is less conservative than the previous results seen in [20].

Non-PDC Static Output Feedback Control for T-S Fuzzy Systems (T-S 퍼지 시스템에 대한 비병렬분산보상 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.496-501
    • /
    • 2016
  • This paper presents a design method of non-parallel distributed compensation (non-PDC) static output feedback controller for continuous- and discrete-time T-S fuzzy systems. The existence condition of static output feedback control law is represented in terms of linear matrix inequalities (LMIs). The proposed sufficient stabilizing condition does not need any transformation matrices and equality constraints and is less conservative than the previous result of [21].

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper presents a design method of delay-dependent control for T-S fuzzy systems with time delays. Based on parallel distributed compensation (PDC) and a descriptor model transformation of the system, a delay-dependent control is utilized. An appropriate Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient condition for delay-dependent control is represented in terms of linear matrix inequalities (LMIs).

Modified Transformation and Evaluation for High Concentration Ozone Predictions (고농도 오존 예측을 위한 향상된 변환 기법과 예측 성능 평가)

  • Cheon, Seong-Pyo;Kim, Sung-Shin;Lee, Chong-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 2007
  • To reduce damage from high concentration ozone in the air, we have researched how to predict high concentration ozone before it occurs. High concentration ozone is a rare event and its reaction mechanism has nonlinearities and complexities. In this paper, we have tried to apply and consider as many methods as we could. We clustered the data using the fuzzy c-mean method and took a rejection sampling to fill in the missing and abnormal data. Next, correlations of the input component and output ozone concentration were calculated to transform more correlated components by modified log transformation. Then, we made the prediction models using Dynamic Polynomial Neural Networks. To select the optimal model, we adopted a minimum bias criterion. Finally, to evaluate suggested models, we compared the two models. One model was trained and tested by the transformed data and the other was not. We concluded that the modified transformation effected good to ideal performance In some evaluations. In particular, the data were related to seasonal characteristics or its variation trends.

Linearization of T-S Fuzzy Systems and Robust Optimal Control

  • Kim, Min-Chan;Wang, Fa-Guang;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • This paper proposes a novel linearization method for Takagi.sugeno (TS) fuzzy model. A T-S fuzzy controller consists of linear controllers based on local linear models and the local linear controllers cannot be designed independently because of overall stability conditions which are usually conservative. To use linear control theories easily for T-S fuzzy system, the linearization of T-S fuzzy model is required. However, The linearization of T-S fuzzy model is difficult to be achieved by using existing linearization methods because fuzzy rules and membership functions are included in T-S fuzzy models. So, a new linearization method is proposed for the T-S fuzzy system based on the idea of T-S fuzzy state transformation. For the T-S fuzzy system linearized with uncertainties, a robust optimal controller with the robustness of sliding model control(SMC) is designed.

A Study on the Extension of Fuzzy Programming Solution Method (Fuzzy 계확법의 해법일반화에 관한 연구)

  • 양태용;김현준
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1986
  • In this study, the fuzzy programming is extended to handle various types of membership functions by transformation of the complicated fuzzy programming problems into the equivalent crisp linear programming problems with single objective. It is well-known that the fuzzy programming problem with linear membership functions (i.e., ramp type) can be easily transformed into a linear programming problem by introducing one dummy variable to minimize the worst unwanted deviation. However, until recently not many researches have been done to handle various general types of complicated linear membership functions which might be more realistic than ramp-or triangular-type functions. In order to handle these complicated membership functions, the goal dividing concept, which is based on the fuzzy set operation (i. e., intersection and union operations), has been prepared. The linear model obtained using the goal dividing concept is more efficient and single than the previous models [4, 8]. In addition, this result can be easily applied to any nonlinear membership functions by piecewise approximation since the membership function is continuous and monotone increasing or decreasing.

  • PDF