• 제목/요약/키워드: Fuzzy speed control

검색결과 740건 처리시간 0.032초

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

A study on autonomous steering and Cruise speed control using Fuzzy Algorithm

  • Kim, Dae-Hyun;Kim, Hyo-Jae;Lee, Young-Su;Lee, Sang-Min;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.539-542
    • /
    • 2005
  • This paper contains studies which are Cruise speed control which is made by PID algorithm and automated steering system for avoiding the obstacle coming from the front which is using Fuzzy algorithm. This mobile car uses DC motor whose speed is detected by encoder. Ultrasonic Waves Sensor established in the front detects the obstacle and the curve. And the sensor established in the side detects the distance of the space of the road. If the sensor detects the obstacle or the curve, the car is controlled by using Fuzzy algorithm. The Fuzzy algorithm calculates the speed and steering angle by using the value which is obtained from sensor.

  • PDF

퍼지 게인 스케줄링을 이용한 선박 디젤기관의 속도 제어 (Speed Control of Marine Diesel Engines Using Fuzzy Gain Scheduling)

  • 박승수;이현식;김도응;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.638-645
    • /
    • 2002
  • This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.

Optimal Efficiency Control of Wind Generation System Using Fuzzy Logic Control

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1750-1752
    • /
    • 2005
  • This paper presents a variable speed wind generation system where fuzzy logic controllers is used as efficiency optimizer. The fuzzy logic controller increments the machine flux by on-line search to improve the generator efficiency in case of light load. The speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power The generator reference speed is adjusted according to the optimum tip-speed ratio. The complete control system has been developed by simulation study.

  • PDF

퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어 (Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller)

  • 이홍균;이정철;김종관;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System)

  • 김재곤;허욱열;김병륜
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

퍼지속도보상기를 이용한 매입형 영구자석 동기전동기의 속도 센서리스 제어 (A Speed Sensorless Vector Control of Interior Permanent Magnet Synchronous Motors Using a Fuzzy Speed Compensator)

  • 김천규;김영조;이을재;최정수;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1114-1115
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF

BLDC 모터의 속도 제어를 위한 퍼지 PI 제어기 설계 (Design of a Fuzzy PI Controller for the Speed Control of BLDC Motor)

  • 송승준;김용;이승일;이은영;김필수;조규만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1147-1150
    • /
    • 2001
  • This paper represents a realization of a fuzzy PI control method for a speed control of BLDC motor. In other words, the gains of the PI controller is tuned by a fuzzy logic controller. Simplified reasoning methods are used for fuzzy reasoning. Fuzzy logic speed controller is designed by using the high performance of DSPchip(TMS320F240). By experiment, it is confirmed that the speed of BLDC motor well follows an command speed in the load variables or speed variables.

  • PDF

퍼지제어기를 이용한 센서리스 직류전동기의 속도제어에관한연구 (A Study on the Speed Control of a Sensorless DC Motor by using a Fuzzy Controller)

  • 하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.311-319
    • /
    • 1998
  • DC Motors have been widely used in industry as driving power motors for electrical vehicles cranes and winches due to their strong starting torques and as servo-motors for position and speed control systems due to their convenience of speed control etc. Generally in the speed control systems of motors speed sensors are required and this fact results in he increased price and operating cost and in the limitted applications. This paper presents a new speed control method for sensorless DC motors. In this scheme the speed signal is estimatd by the measurement values of the armature voltage and current. A Fuzzy feedback controller instead of the conventional PID controller. Through simulations the effectiveness and usefullness of the proposed method are illustrated.

  • PDF

유도 전동기의 견실한 속도 제어를 위한 자기 조정 퍼지 제어 시스템의 구현 (Implementation of Self-Tuning Fuzzy Control System for Robust Speed Control of an Induction Motor)

  • 송호신;이오결;이준탁;우정인
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.346-349
    • /
    • 1994
  • In this paper, we implemented the variable spped controller of an induction motor using the self-tuning fuzzy control algorithms, which recently is invoking the remarkable interest. Also we preposed a self-tuning technique of scale factors which could easily design the fuzzy speed controller. Comparing with conventional PI speed controller, the performances of proposed fuzzy controller such as dynamic responses and its the robustness against load disturbance were substantially improved.