본 연구에서는 분규ㆍ회귀목-적응 뉴고 퍼지추론 시스템을 사용하여 교량 구조물에 대한 유용한 모델을 제시하였다. 퍼지결정목은 데이터집합의 입력영역이 서로 다른 영역으로 분류되고 하나의 부호나 값으로 나타내지며 데이터 정점에서 특정화시키기 위한 활동영역으로 할당되기도 한다. 분류문제로 사용되는 결정목은 가끔 퍼지결정목이라고 불려지는데, 각 최종점은 주어진 특정백터의 예측등급을 나타낸다. 회귀문제에 사용되는 결정목을 가끔 퍼지회귀목이라고 하는데, 이 때 최종점 영역은 주어진 입력백터의 예측 출력 값을 상수나 방정식으로 나타낼 수 있다. 분류ㆍ회귀목은 관련된 입력값을 선택하여 입력구역에서 분류 할 수 있는 반면에 적응 뉴로 퍼지추론 시스템은 회귀문제를 수정하고 이틀의 회귀문제를 보다 연속적이면서 간략하게 만들 수 있음을 주목해야 한다. 따라서 분류ㆍ회귀목과 적응 뉴로 퍼지추론 시스템은 서로 상보적인 것이며, 이들의 조합은 퍼지모델링을 위해 실직적인 근사식으로 구성된다.
In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.13-23
/
2001
Most current machine vision systems for industrial inspection were developed with one specific task in mind. Hence, these systems are inflexible in the sense that they cannot easily be adapted to other applications. In this paper, a general vision system framework has been developed that can be easily adapted to a variety of industrial web inspection problems. The objective of this system is to automatically locate and identify \\\"defects\\\" on the surface of the material being inspected. This framework is designed to be robust, to be flexible, and to be as computationally simple as possible. To assure robustness this framework employs a combined strategy of top-down and bottom-up control, hierarchical defect models, and uncertain reasoning methods. To make this framework flexible, a modular Blackboard framework is employed. To minimize computational complexity the system incorporates a simple multi-thresholding segmentation scheme, a fuzzy logic focus of attention mechanism for scene analysis operations, and a partitioning if knowledge that allows concurrent parallel processing during recognition.cognition.
퍼지 규칙기반 분류 시스템에서 위한 퍼지 분할 경계들의 선택은 중요하고 어려운 문제이다. 그래서 이들을 효과적으로 결정하기 위해서 신경망, 유전자알고리즘 등과 같은 학습과정에 기반을 둔 다양한 방법들이 제안되었고, 이전 연구에서는 이들 방법에 대한 문제점을 지적하고 이를 개선하기 위하여 중첩 형태에서 퍼지 분할을 결정할 수 있는 방법에 대해서 논의하였다. 본 논문에서는 이전 연구의 방법을 3가지 형태의 분류 경계들, 즉 비중첩, 중첩, 1점 인접 형태로 확장하였다. 또한 이들을 학습에 의존하지 않고 주어진 데이터로부터 얻어진 통계적 정보만을 사용하여 결정하는 방법을 제안하고, 이를 패턴 분류 문제에 적용하여 제안된 방법의 효용성을 보인다.
클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.
In this paper, new architectures and comprehensive design methodologies of Genetic Algorithms(GAs) based Genetically optimized Neurofuzzy Networks(GoNFN) are introduced, and a series of numeric experiments are carried out. The proposed GoNFN is based on the rule-based Neurofuzzy Networks(NFN) with the extended structure of the premise and the consequence parts of fuzzy rules being formed within the networks. The premise part of the fuzzy rules are designed by using space partitioning in terms of fuzzy sets defined in individual variables. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and quadratic are taken into consideration. The structure and parameters of the proposed GoNFN are optimized by GAs. GAs being a global optimization technique determines optimal parameters in a vast search space. But it cannot effectively avoid a large amount of time-consuming iteration because GAs finds optimal parameters by using a given space. To alleviate the problems, the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. In a nutshell, the objective of this study is to develop a general design methodology o GAs-based GoNFN modeling, come up a logic-based structure of such model and propose a comprehensive evolutionary development environment in which the optimization of the model can be efficiently carried out both at the structural as well as parametric level for overall optimization by utilizing the separate or consecutive tuning technology. To evaluate the performance of the proposed GoNFN, the models are experimented with the use of several representative numerical examples.
유용광물자원탐사나 산사태 취약성 분석과 같은 지질학적 응용을 목적으로 GIS를 이용하여 다양한 지질자료를 통합하기 위한 수학적 모델이 개발되어 왔다. 여러 공간통합 방법 중에서 불확실한 정보를 효율적으로 다룰 수 있는 것으로 알려진 퍼지 이론을 이용한 지질정보의 통합에 대해서 논의하였다. 그동안 전문가의 의견에 의존하여 지질자료를 표현하는 목표 유도형 통합방법과 달리, 통합 목표와 지질자료 사이의 통계적 관계를 이용하는 자료 유도형 통합 방법을 제안하였다. 제안된 기법은 퍼지 소속함수로의 표현, 퍼지 연산자를 이용한 결합, 비퍼지화, 검증의 4단계로 구성된다. 자료 표현에는 우도비에 기반한 퍼지 소속함수를, 퍼지 소속함수들의 결합에는 퍼지 연산자 네트웍을, 통합결과의 상대적인 가능성값을 도시하기 위해 비퍼지화 단계를 각각 제안하였다. 최종적으로 통합 목표에 대한 의미있는 해석과 다양한 퍼지 연산자 네트웍의 정량적 비교를 위해 공간 분할에 기반한 검증 과정을 제안하였다. 지질학적 응용을 목적으로 제안한 방법론의 적용가능성, 실제 적용시의 제안점을 산사태 취약성 분석 적용연구를 통해 논의하였다. 적용연구 결과, 대상지역에서 산사태에 대한 취약한 지역을 구분하는데 제안기법이 효과적으로 이용될 수 있음을 확인할 수 있었으며, 검증을 통해 최종 퍼지 소속함수의 결합에 ${\gamma}$연산자를 사용한 경우가 최대, 최소 연산자를 사용한 경우에 비해 높은 예측능력을 나타내었다.
본 논문에서는 다차원 특징 공간에서 퍼지규칙을 자동으로 생성하기 위해 다차원 공간을 효과적으로 패턴 분할하는 방법을 제안한다. 제안된 방법은 패턴 공간의 순차적 재분할(sequential subdivision)에 기초하며, 생성된 패턴 부공간의 크기는 불규칙하다. 제안된 방법에서 최초의 n차원 패턴 공간은 패턴의 분포 특성을 고려하여 서로 다른 크기를 갖는 2개의 부공간으로 분할된다. 이 부공간중 재분할할 패턴 공간이 선택되고, 이 재분할은 중지 조건이 만족될 때까지 재귀적으로 반복된다. 본 제안의 결과는 인공위성 Landsat TM을 사용한 2,4,7번 밴드의 다중분광 이미지에 적용시켰으며, 만족할 만한 결과를 얻을 수 있었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권3호
/
pp.210-216
/
2006
In the rule based modeling, data partitioning plays crucial role be cause partitioned sub data set implies particular information of the given data set or system. In this paper, we present an empirical study result of the data pattern estimation to find underlying data patterns of the given data. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). In each sequence, the average value of the sum of all inter-distance between centroid and data point. In the sequel, compute the derivation of the weighted average distance to observe a pattern distribution. For the final step, after overall clustering process is completed, weighted average distance value is applied to estimate range of the number of clusters in given dataset. The proposed estimation method and its result are considered with the use of FCM demo data set in MATLAB fuzzy logic toolbox and Box and Jenkins's gas furnace data.
본 논문은 인접한 두 로봇의 위치와 역할에 따라 로봇의 행동을 결정하는 퍼지 로직 중계자를 사용한 로봇 축구의 전략 및 전술을 제안한다. 기존의 Q 학습 알고리즘은 로봇의 수에 따라 상태의 수가 기하급수적으로 증가하여, 많은 연산을 필요로 하기 때문에 실시간 연산을 필요로 하는 로봇 축구 시스템에 알맞지 않다. Modular Q 학습 알고리즘은 해당 지역을 분할하는 방법으로 상태수를 줄였는데, 여기에는 로봇들 간의 협력을 위하여 따로 중재자 알고리즘이 사용되었다. 제안된 방법은 퍼지 규칙을 사용하여 로봇들 간의 협력을 위한 중재자 알고리즘을 구현하였고, 사용된 퍼지 규칙이 간단하기 때문에 계산 량이 작아 실시간 로봇 축구에 적합하다. MiroSot 시뮬레이션을 통하여 제안된 방법의 가능성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.