• Title/Summary/Keyword: Fuzzy membership

Search Result 1,234, Processing Time 0.023 seconds

Fuzzy Inference Mechanism Based on Fuzzy Cognitive Map for B2B Negotiation

  • Lee, Kun-Chang;Kang, Byung-Uk
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.134-149
    • /
    • 2004
  • This paper is aimed at proposing a fuzzy inference mechanism to enhancing the quality of cognitive map-based inference. Its main virtue lies in the two mechanisms: (1) a mechanism for avoiding a synchronization problem which is often observed during inference process with traditional cognitive map, and (2) a mechanism for fuzzifying decision maker's subjective judgment. Our proposed fuzzy inference mechanism (FIM) is basically based on the cognitive map stratification algorithm which can stratify a cognitive map into number of strata and then overcome the synchronization problem successfully. Besides, the proposed FIM depends on fuzzy membership function which is administered by decision maker. With an illustrative B2B negotiation problem, we applied the proposed FIM, deducing theoretical and practical implications. Implementation was conducted by Matlab language.

  • PDF

A Type 2 Fuzzy C-means (제2종 퍼지 집합을 이용한 퍼지 C-means)

  • Hwang, Cheul;Rhee, Fransk Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.16-19
    • /
    • 2001
  • This paper presents a type-2 fuzzy C-means (FCM) algorithm that is an extension of the conventional fuzzy C-means algorithm. In our proposed method, the membership values for each pattern are extended as type-2 fuzzy memberships by assigning membership grades to the type-1 memberships. In doing so, cluster centers that are estimated by type-2 memberships may converge to a more desirable location than cluster centers obtained by a type-1 FCM method in the presence of noise.

  • PDF

Hybrid Fuzzy Controller Based on Control Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 제어파라미터 추정모드기반 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2545-2547
    • /
    • 2000
  • In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.

  • PDF

Implementation of the Thermal Control System using RVEGA-Fuzzy Control Technique (RVEGA-퍼지 제어 기법을 이용한 온도 제어 시스템의 구현)

  • 김정수;정종원;박두환;지석준;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, we proposed an optimal identification method of the membership functions and the numbers of fuzzy rule base for the stabilization controller of the Thermal process control system by RVEGA. Although fuzzy logic controllers and expert systems have been successfully applied in many complex industrial process, they must rely on experts knowledges. So it is difficult in determination of the linguistic state space, definition of the membership functions of each linguistic term and the derivation of the control rules. To verify the validity of this RVEGA-based fuzzy controller, Thermal process control system, with strong nonlinear dynamics, was selected for application of this algorithm and compare with PI controller, and the empirically improved fuzzy controller.

  • PDF

Co-evolutionary Genetic Algorithm for Designing and Optimaizing Fuzzy Controller

  • Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.354-360
    • /
    • 1998
  • In general, it is very difficult to find optimal fuzzy rules by experience when a system is dynamical and/or complex. Futhermore proper fuzzy partitioning is not deterministic and there is no unique solution. Therefore we propose a new design method of an optimal fuzzy logic controller, that is a co-evolutionary genetic algorithm finding optimal fuzzy rule and proper membership functions at the same time. We formalize the relation between fuzzy rules and membership functions in terms of fitness. We review the typical approaching methods to co-evolutionary genetic algorithms , and then classify them by fitness relation matrix. Applications of the proposed method to a path planning problem of autonomous mobile robots when moving objects exist are presented to demonstrate the performance and effectiveness of the method.

  • PDF

The Development of Genetic Fuzzy System for Estimating Link Traveling Speed (주행속도 추정을 위한 Genetic Fuzzy System의 개발)

  • Youn, Yeo-Hun;Lee, Hong-Chul;Kim, Yong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.32-40
    • /
    • 2003
  • In this study, we develop the Genetic Fuzzy System(GFS) to estimate the link traveling speed. Based on the genetic algorithm, we can get the fuzzy rules and membership functions that reflect more accurate correlation between traffic data and speed. From the fact that there exist missing links that lack traffic data, we added a Case Base Reasoning(CBR) to GFS to support estimating the speed of missing links. The case base stores the fuzzy rules and membership functions as its instances. As cases are accumulated, the case base comes to offer appropriate cases to missing links. Experiments show that the proposed GFS provides the more accurate estimation of link traveling speed than existing methods.

Fuzzy Hypotheses Testing of Likert Fuzzy Scale (리커트 퍼지 척도에 대한 퍼지 가설검정)

  • Kang Man-Ki;Lee Chang-Eun;Chio Gue-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.533-537
    • /
    • 2005
  • A Likert scale is an often used questionnaire format. It requests respondents to specify their level of agreement to each of a list of statements. A typical question using a five-point Likert scale might make a statement. The results shows vague values. We have five-point fuzzy membership function by fuzzy valued three-point for the question and fuzzy hypothesis test the membership function by 95% confidence interval.

EFMDR-Fast: An Application of Empirical Fuzzy Multifactor Dimensionality Reduction for Fast Execution

  • Leem, Sangseob;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.37.1-37.3
    • /
    • 2018
  • Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, in this study, we implemented EFMDR using RCPP ($c^{{+}{+}}$ package) for faster executions. Our implementation for faster EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.

Adaptive Control by the Fusion of Genetic Algorithms and Fuzzy Inference on Micro Hole Drilling (미세드릴가공에 있어서 유전알고리즘과 퍼지추론의 합성에 의한 적응제어)

  • Paik, In-Hwan;Chung, Woo-Seop;Kweon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.95-103
    • /
    • 1995
  • Recently the trends toward reduction in size of industrial products have increased the application of micro drilling. But micro drilling has still much difficulty so that the needs for active control which give adaptation to controller are expanding. In this paper initial cutting condition was determined for some sorkpieces by experiment and GA-based Fuzzy controller was devised by genetic algorithms and fuzzy inference. The fuzzy inference has been applied to the various prob- lems. However the determination of the membership function is one of the difficult problem. So we introduce a genetic algorithms and propose a self-tuning method of fuzzy membership function. Based on this intelligent control, automation of micro drilling was carried out like the cutting process of skilled machinist.

  • PDF

Cluster Based Fuzzy Model Tree Using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Cluster based fuzzy model tree has certain drawbacks to decrease performance of testinB data when over-fitting of training data exists. To reduce the sensitivity of performance due to over-fitting problem, we proposed a modified cluster based fuzzy model tree with node information. To construct model tree, cluster centers are calculated by fuzzy clustering method using all input and output attributes in advance. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. In the prediction step, membership values are calculated by using fuzzy distance between input attributes and all centers that passing the nodes from root to leaf nodes. Finally, data prediction is performed by the weighted average method with the linear models and fuzzy membership values. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional cluster based fuzzy model tree.