• 제목/요약/키워드: Fuzzy learning

검색결과 982건 처리시간 0.045초

쌍방향 방식을 이용한 가상대학 연구 (A Study on the Virtual University using Full Duplex Method)

  • 홍유식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.65-73
    • /
    • 2006
  • 강사가 강의실에서 누가 강의를 이해했는지 이해를 못했는지를 아는 것은 매우 어렵다. 그러므로 본 논문에서는 쌍방향 방식을 이용해서 학생 점수 평가 알고리즘을 제안한다. 뿐만 아니라, 퍼지 규칙 및 신경망을 이용한 전 방향 방식이 시험에서 어떤 문제를 이해 못했는지를 말해 줄 수 있음을 확인하였다. 컴퓨터 모의실험결과 쌍방향 가상 수업시스템이 이해하지 못한 학생을 고려하지 않은 기존의 단 방향 가상 수업 시스템 보다 훨씬 효과적인 것을 입증하였다.

  • PDF

Constructive Methods of Fuzzy Rules for Function Approximation

  • Maeda, Michiharu;Miyajima, Hiromi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1626-1629
    • /
    • 2002
  • This paper describes novel methods to construct fuzzy inference rules with gradient descent. The present methods have a constructive mechanism of the rule unit that is applicable in two parameters: the central value and the width of the membership function in the antecedent part. The first approach is to create the rule unit at the nearest position from the input space, for the central value of the membership function in the antecedent part. The second is to create the rule unit which has the minimum width, for the width of the membership function in the antecedent part. Experimental results are presented in order to show that the proposed methods are effective in difference on the inference error and the number of learning iterations.

  • PDF

자기구성 퍼지네어의 궤적연구 및 도립진자 제어 적용 (Trajectory Study of Self-organizing Fuzzy Control and Its Application to Inverted Pendulum Control)

  • 박정일;류재규
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper, we propose a new modification method of the look-up table in self-organizing fuzzy control using look-up table. This method has the property that look-up table is modified to have fast response property. Its principle is that the controller forces the trajectory to go into the fast respose region which the error change amount is larger than the error at initial time whenever the reference or disturbance change. Also we introduce the variable learning speed coefficient which is proportional to distance from switching curve. And to demonstrate the applicability of the proposed method, we had simulation study for some examples and esecuted pole balance experiments with inverted pendulum.

  • PDF

A Study on a Multi-Attribute Decision Making Process Using Fuzzy Neural Network

  • Hashiyama, Tomonori;Furuhashi, Takeshi;Uchikawa, Yoshiki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.810-813
    • /
    • 1993
  • In multi-attribute decision making, human beings influenced with various factors often change their decisions. This paper presents a new approach to express the changes in the decision makings when they got new information. The new approach uses the fuzzy neural network (FNN) which has been proposed by the authors. The FNN identifies the weights to the attributes with the back propagation learning. Through experiments, it is shown that the changes of subjects' decision can be described by the changes of their weights to the attributes.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정 (Neural Network Parameter Estimation of IPMSM Drive using AFLC)

  • 고재섭;최정식;정동화
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계 (Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index)

  • 윤기찬;오성권;박종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

생리학적 퍼지 신경망을 이용한 단일 색상 기반 감성 인식 (Recognition of Emotion Based on Simple Color Using Phrsiological Fuzzy Neural Networks)

  • 주이환;김배성;강동훈;성창민;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.536-540
    • /
    • 2003
  • 최근에 개인의 경험을 통해 얻어지는 외부의 물리적 자극에 대한 복합적인 감성을 측성 및 분석하여 공학적으로 처리함으로서 인간이 보다 편리하고 안락한 생활을 영위하도록 하는 연구가 활발히 진행되고 있다. 본 논문에서는 색채 심리를 바탕으로 한 감성을 인식할 수 있는 생리학적 퍼지 신경망은 제안하였다. 본 논문에서 제안한 생리학적 퍼지 뉴런 구조를 기반으로 하여 입력층, 퍼지 귀속 시넵스(Fuzzy Membership Synapse) 및 출력층으로 구성되며 지도 학습(supervised learning)으로 동작된다. 제안된 생리학적 퍼지 신경망을 단일 색상 정보에 따른 감성 인식에 적용한 결과, 단일 색상 정보에 따른 감성 인식에 있어서 효율적임을 확인 할 수 있었다.

  • PDF

퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법 (Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier)

  • 신상호;한수환;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계 (Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design)

  • 박병준;이동윤;오성권
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.236-244
    • /
    • 2005
  • 본 연구에서는 퍼지관계 및 진화론적 최적 다층 퍼셉트론에 기초한 퍼지다항식 뉴럴네트워크(FPNN)의 새로운 구조를 소개하고, 포괄적인 설계방법론을 토의하며, 그리고 일련의 수치적인 실험이 수행된다. 진화론적 최적 FPNN(EFPNN)의 구축을 위해 컴퓨터지능(CI)의 기반 기술을 이용한다. EFPNN의 구조는 규칙베이스 퍼지뉴럴네트워크와 다항식 뉴럴네트워크의 결합에 의한 유전자 최적 구동 하이브리드 시스템의 시너지 이용으로 얻어진다. 퍼지뉴럴네트워크는 EFPNN의 전체규칙 구조의 전반부에 기여하고, EFPNN의 후반부는 다항식 뉴럴네트워크를 사용하여 설계된다. EFPNN의 후반부를 위한 유전론적 최적 다항식 뉴럴네트워크의 개발은 두 최적화 기법에 의해 수행된다. 즉 구조적 최적화는 유전자알고리즘에 의해 수행되고, 파라미터 최적화는 최소자승법 기반의 학습을 통해 행하여진다. EFPNN의 성능 평가를 위해, 모델은 몇 가지 수치 예제를 이용한다. 비교에 의한 해석은 제안된 EFPNN이 이전에 제시된 다른 지능형 모델보다 높은 정확도 뿐만 아니라 좀 더 우수한 예측능력을 가지는 모델임을 보여준다.