• Title/Summary/Keyword: Fuzzy learning

Search Result 982, Processing Time 0.033 seconds

Evaluation Factors Influencing Construction Price Index in Fuzzy Uncertainty Environment

  • NGUYEN, Phong Thanh;HUYNH, Vy Dang Bich;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2021
  • In recent years, Vietnam's economic growth rate has been attributed to the growth of many well-managed industries within Southeast Asia. Among them is the civil construction industry. Construction projects typically take a long time to complete and require a huge budget. Many socio-economic variables and factors affect total construction project costs due to market fluctuations. In recent years, crucial socioeconomic development indicators of construction reached a fairly high growth rate. Also, most infrastructure and construction projects have a high degree of complexity and uncertainty. This makes it challenging to predict the accurate project price. These challenges raise the need to recognize significant factors that influence the construction price index of civil buildings in Vietnam, both micro and macro. Therefore, this paper presents critical factors that affect the construction price index using the fuzzy extent analysis process in an uncertain environment. This proposed quantitative model is expected to reflect the uncertainty in the process of evaluating and ranking the influencing factors of the construction price index in Vietnam. The research results would also allow project stakeholders to be more informed of the factors affecting the construction price index in the context of Vietnam's civil construction industry. They also enable construction contractors to estimate project costs and bid rates better, enhancing their project and risk management performance.

Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning (AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1341-1347
    • /
    • 2020
  • Legacy studies for classifying arrhythmia have been studied in order to improve the accuracy of classification, Neural Network, Fuzzy, Machine Learning, etc. In particular, deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose parameter extraction based on AR and arrhythmia classification through a deep learning. For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The classification rate of PVC is evaluated through MIT-BIH arrhythmia database. The achieved scores indicate arrhythmia classification rate of over 97%.

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

A On-Line Pattern Clustering Technique Using Fuzzy Neural Networks (퍼지 신경망을 이용한 온라인 클러스터링 방법)

  • 김재현;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.199-210
    • /
    • 1994
  • Most of clustering methods usually employ a center or predefined shape of a cluster to assign the input data into the cluster. When there is no information about data set, it is impossible to predict how many clusters are to be or what shape clusters take. (the shape of clusters could not be easily represented by the center or predefined shape of clusters) Therefore, it is difficult to assign input data into a proper cluster using previous methods. In this paper, to overcome such a difficulty a cluster is to be represented as a collection of several subclusters representing boundary of the cluster. And membership functions are used to represent how much input data bllongs to subclusters. Then the position of the nearest subcluster is adaptively corrected for expansion of cluster, which the subcluster belongs to by use of a competitive learning neural network. To show the validity of the proposed method a numerical example is illustrated where FMMC(Fuzzy Min-Max Clustering) algorithm is compared with the proposed method.

  • PDF

CMAC Neuro-Fuzzy Design for Color Calibration (컬러재현을 위한 CMAC의 뉴로퍼지 설계)

  • 이철희;변오성;문성룡;임기영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.331-335
    • /
    • 2001
  • Cl\iAC model was proposed by Albus [6J to formulate the processing characteristics of the human cerebellum. Instead of the global weight updating scheme used in the back propagation, CMAC use the local weight updating scheme. Therefore, CMAC have the advantage of fast learning and high convergence rate. In this paper, simulate Color Calibration by CMAC in color images and design hardware by VHDL-base high-level synthesis.

  • PDF

Design of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계)

  • 이상윤;한성현;신위재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.463-468
    • /
    • 2002
  • In this paper, we proposed a recurrent time delayed neural network controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network controller.

  • PDF

Fuzzy Logic Controller for a Mobile Robot Navigation (퍼지제어기를 이용한 무인차 항법제어)

  • Chung, Hak-Young;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

Efficiency Optimization Control of SynRM with ALM -FNN Controller (ALM-FNN 제어기에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.47-49
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism-fuzzy neural networks(ALM-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Anti-swing and Position Control of Crane Using Intelligent Technique (지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구)

  • Lee, Eun-Gyung;Lee, Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF