• Title/Summary/Keyword: Fuzzy image enhancement

Search Result 33, Processing Time 0.028 seconds

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

Edge Detection of Characters on the Rubber Tire Image Using Fuzzy $\alpha-Cut$ Set (퍼지 $\alpha$ 컷 집합에 의한 고무 타이어 영상의 문자 윤관선 추출)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.71-80
    • /
    • 1994
  • The purpose of this paper is to explore the use of fuzzy set theory for image processing and analysis. As an application example, the fuzzy method of edge detection is proposed to extract the edges of raised characters on tires.In general, Sobel, Prewitt, Robert and LoG filters are used to detect the edge, but it is difficult to detect the edge because of ambiguity of representations, noise and general problems in the interpretation of tire image. Therefore, in his paper, the fuzzy property plane has been extracted from the spatial domain using the ramp-mapping function. And then the ideas of fuzzy MIN and MAX are applied in removing noise and enhancement of the image simultaneously. From the result of MIN and MAX procedure a new fuzzy singleton is generated by extracting the difference between adjacent membership function values. And the edges are extracted by applying fuzzy $\alpha$-cut set to the fuzzy singletion, Finally, these ideas are applied to the tire images.

  • PDF

Automatic Anatomically Adaptive Image Enhancement in Digital Chest Radiography

  • Kim, Sung-Hyun;Lee, Hyoung-Koo;Ho, Dong-Su;Kim, Do-Il;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.442-445
    • /
    • 2002
  • We present an algorithm for automatic anatomically adaptive image enhancement of digital chest radiographs. Chest images were exposed using digital radiography system with a 0.143 mm pixel pitch, l4-bit gray levels, and 3121 ${\times}$ 3121 matrix size. A chest radiograph was automatically divided into two classes (lung field and mediastinum) by using a maximum likelihood method. Each pixel in an image was processed using fuzzy domain transformation and enhancement of both the dynamic range and local gray level variations. The lung fields were enhanced appropriately to visualize effectively vascular tissue, the bronchus, and lung tissue, etc as well as pneumothorax and other lung diseases at the same time with the desired mediastinum enhancement. A prototype implementation of the algorithm is undergoing trials in the clinical routine of radiology department of major Korean hospital.

  • PDF

2D Image Interpolation using Fuzzy Inference (퍼지 추론을 사용한 2D 영상의 보간)

  • Kang, Keum-Boo;Choi, Jae-Ho;Yang, Woo-S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2785-2788
    • /
    • 2001
  • In this paper, we present a new interpolation scheme for image enhancement using fuzzy inference. In general, interpolation techniques are based on linear operators which are essentially lowpass filters, hence, they tend to blur fine details in the original image. In our approach, the operator itself balances the strength of its sharpening and noise suppressing components according to the properties of the input image data.

  • PDF

A Study on the Edge Enhancement of X-ray Images Generated by a Gas Electron Multiplier Chamber

  • Moon, B.S.;Coster, Dan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.155-160
    • /
    • 2004
  • In this paper, we describe the results of a study on the edge enhancement of X-ray images by using their fuzzy system representation. A set of gray scale X-ray images was generated using the EGS4 computer code. An aluminum plate or a lead plate with three parallel strips taken out has been used as the object with the thickness and the width of the plate, and the gap between the two strips varied. We started with a comparative study on a set of the fuzzy sets for their applicability as the input fuzzy sets for the fuzzy system representation of the gray scale images. Then we describe how the fuzzy system is used to sharpen the edges. Our algorithm is based on adding the magnitude of the gradient not to the pixel value of concern but rather to the nearest neighboring pixel in the direction of the gradient. We show that this algorithm is better in maintaining the spatial resolution of the original image after the edge enhancement.

Noise Removal using Fuzzy Mask Filter (퍼지 마스크 필터를 이용한 잡음 제거)

  • Lee, Sang-Jun;Yoon, Seok-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.41-45
    • /
    • 2010
  • Image processing techniques are fundamental in human vision-based image information processing. There have been widely studied areas such as image transformation, image enhancement, image restoration, and image compression. One of research subgoals in those areas is enhancing image information for the correct information retrieval. As a fundamental task for the image recognition and interpretation, image enhancement includes noise filtering techniques. Conventional filtering algorithms may have high noise removal rate but usually have difficulty in conserving boundary information. As a result, they often use additional image processing algorithms in compensation for the tradeoff of more CPU time and higher possibility of information loss. In this paper, we propose a Fuzzy Mask Filtering algorithm that has high noise removal rate but lesser problems in above-mentioned side-effects. Our algorithm firstly decides a threshold based on fuzzy logic with information from masks. Then it decides the output pixel value by that threshold. In a designed experiment that has random impulse noise and salt pepper noise, the proposed algorithm was more effective in noise removal without information loss.

Evolutionary Design of Morphology-Based Homomorphic Filter for Feature Enhancement of Medical Images

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.172-177
    • /
    • 2009
  • In this paper, a new morphology-based homomorphic filtering technique is presented to enhance features in medical images. The homomorphic filtering is performed based on the morphological sub-bands, in which an image is morphologically decomposed. An evolutionary design is carried to find an optimal gain and structuring element of each sub-band. As a search algorithm, Differential Evolution scheme is utilized. Simulations show that the proposed filter improves the contrast of the interest feature in medical images.

Backlit Region Detection Using Adaptively Partitioned Block and Fuzzy C-means Clustering for Backlit Image Enhancement (역광 영상 개선을 위한 퍼지 C-평균 분류기와 적응적 블록 분할을 사용한 역광 영역 검출)

  • Kim, Nahyun;Lee, Seungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.124-132
    • /
    • 2014
  • In this paper, we present a novel backlit region detection and contrast enhancement method using fuzzy C-means clustering and adaptively partitioned block based contrast stretching. The proposed method separates an image into both dark backlit and bright background regions using adaptively partitioned blocks based on the optimal threshold value computed by fuzzy logic. The detected block-wise backlit region is refined using the guided filter for removing block artifacts. Contrast stretching algorithm is then applied to adaptively enhance the detected backlit region. Experimental results show that the proposed method can successfully detect the backlit region without a complicated segmentation algorithm and enhance the object information in the backlit region.

Contrast Enhancement of Blurred Images Using Fuzzy Logic Concepts (퍼지 논리를 이용한 흐린 영상의 콘트라스트 향상)

  • 박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.181-191
    • /
    • 1994
  • A new method for enhancing blurred images using fuzzy logic concepts is proposed. Blurred images contain blurred boundaries which make it difficult to detect edges and segment areas in images. In order to sharpen blurred edges local contrast information of an image and erosion/dilation properties of local min/max operations are used in which local min/max operations are fuzzy logic operations. so that given images are transformed to fuzzy images and then these operations are applied on them. In this method the sharpening operation can be iteratively applied to the image to get better deblurring effect and gray-scale "salt-and-pepper" noises are suppressed. the efficiency of our algorithm is demonstrated through experimental results obtained with artificially-made blurred images and real blurred images.

  • PDF