• Title/Summary/Keyword: Fuzzy genetic algorithm

Search Result 611, Processing Time 0.033 seconds

A Study of the Obstacle Avoidance for a Quadruped Walking Robot Using Genetic and Fuzzy Algorithm

  • Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.228-231
    • /
    • 2003
  • This paper presents the leg trajectory generation for the quadruped robot with genetic-fuzzy algorithm. To have the nobility even at uneven terrain, a robot is able to recognize obstacles, and generates moving path of body that can avoid obstacles. This robot should have its own avoidance algorithm against obstacles, forwarding to target without collision. During walking period, n robot recognizes obstacle from external environment with a PSD and some interface, and this obstacle information is converted into proper the body rotation angle by fuzzy inference engine. After this process, we can infer the walking direction and walking distance of body, and finally can generate the optimal Beg trajectory using genetic algorithm. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

GA-Based Construction of Fuzzy Classifiers Using Information Granules

  • Kim Do-Wan;Lee Ho-Jae;Park Jin-Bae;Joo Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA is utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

A Construction of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.209-215
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

Design of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

A genetic algorithm for generating optimal fuzzy rules (퍼지 규칙 최적화를 위한 유전자 알고리즘)

  • 임창균;정영민;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.767-778
    • /
    • 2003
  • This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.

Intelligent Tracking Algorithm for Maneuvering Target (지능형 추적 알고리즘)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

Optimization of Fuzzy Controller for Constant Current of Inverter DC Resistance Spot Welding Using Genetic Algorithm (유전알고리즘을 이용한 인버터 DC 저항점용접에서의 정전류퍼지제어기 최적화)

  • Yu, Ji-Young;Yun, Sang-Man;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.99-105
    • /
    • 2010
  • Inverter DC resistance spot welding process has been very widely used for joining such as automotive body sheet metal. Because the lobe area of DC welding is larger than AC welding and DC welding has low electrode wear. So the use of Inverter DC resistance spot welding process has been further increased. And the application of high tensile steel is growing for light weight vehicle. To improve the weldability of high strength steel, the development of Inverter DC resistance spot welding system is more conducted. However, Inverter DC resistance spot welding system has a few problems. Current waveform is unstable and the expulsion has been occurred by characteristics of steel. In this study, inverter DC resistance spot welding system was made. And Fuzzy control algorithm was applied for constant current. The genetic algorithm was applied to optimize the fuzzy scaling factors, in order to optimize the fuzzy control.

Design of Fuzzy PID Controllers Using Steady-state Genetic Algorithms

  • 권영섭;샤요웬동
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.411-419
    • /
    • 1998
  • In this paper the steady-state genetic algorithm is applied for the optimal design of fuzzy PID controllers. Basically the structure of the discussed fuzzy PID controller is extended from the conventional fuzzy PI and PD controllers where only a two-dimensional rule base of the fuzzy PID controller are designed simultaneously. Simulations results shows the superior performance of this optimal designed fuzzy PID controllers to the optimal designed conventional fuzzy PI and PD controllers.

  • PDF

Partially Evaluated Genetic Algorithm based on Fuzzy Clustering (퍼지 클러스터링 기반의 국소평가 유전자 알고리즘)

  • Yoo Si-Ho;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1246-1257
    • /
    • 2004
  • To find an optimal solution with genetic algorithm, it is desirable to maintain the population sire as large as possible. In some cases, however, the cost to evaluate each individual is relatively high and it is difficult to maintain large population. To solve this problem we propose a novel genetic algorithm based on fuzzy clustering, which considerably reduces evaluation number without any significant loss of its performance by evaluating only one representative for each cluster. The fitness values of other individuals are estimated from the representative fitness values indirectly. We have used fuzzy c-means algorithm and distributed the fitness using membership matrix, since it is hard to distribute precise fitness values by hard clustering method to individuals which belong to multiple groups. Nine benchmark functions have been investigated and the results are compared to six hard clustering algorithms with Euclidean distance and Pearson correlation coefficients as fitness distribution method.