• 제목/요약/키워드: Fuzzy decision tree

검색결과 59건 처리시간 0.02초

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

특징공간을 사선 분할하는 퍼지 결정트리 유도 (Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space)

  • 이우향;이건명
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.156-166
    • /
    • 2002
  • 결정트리 생성은 특징값들로 기술된 사례들로부터 분류 규칙을 추출하는 유용한 기계학습 방법중 하나이다. 결정트리는 특징공간을 분할하는 형태에 따라 단변수(univariate) 결정트리와 다변수(multivariate) 결정트리로 대별된다. 실제 현장에서 얻어지는 데이터는 관측오류, 불확실성, 주관적인 판단 등의 이유로 특징값 자체에 오류를 포함하는 경우가 많다. 이러한 오류에 대해 강건한 결정트리를 생성하기 위한 방법으로 퍼지 기법을 도입한 결정트리 생성 방법에 대한 연구가 진행되어 왔다. 현재까지 대부분의 퍼지 결정트리에 대한 연구는 단변수 결정트리에 퍼지 기법을 도입한 것들이며, 다변수 결정트리에 퍼지 기법을 적용한 것은 찾아보기 힘들다. 이 논문에서는 다변수 결정트리에 퍼지 기법을 적용하여 퍼지사선형 결정트리라고 하는 퍼지 결정트리를 생성하는 방법을 제안한다. 또한 제안한 결정트리 생성 방법의 특성을 보이기 위한 실험 결과를 보인다.

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

퍼지의사결정을 이용한 RC구조물의 건전성평가 (Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making)

  • 박철수;손용우;이증빈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

퍼지 결정 트리를 이용한 효율적인 퍼지 규칙 생성 (Efficient Fuzzy Rule Generation Using Fuzzy Decision Tree)

  • 민창우;김명원;김수광
    • 전자공학회논문지C
    • /
    • 제35C권10호
    • /
    • pp.59-68
    • /
    • 1998
  • 데이터 마이닝의 목적은 유용한 패턴을 찾음으로써 데이터를 이해하는데 있으므로, 찾아진 패턴은 정확할뿐 아니라 이해하기 쉬워야한다. 따라서 정확하고 이해하기 쉬운 패턴을 추출하는 데이터 마이닝에 대한 연구가 필요하다. 본 논문에서는 퍼지 결정 트리를 이용한 효과적인 데이터 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 ID3, C4.5와 같은 결정 트리 알고리즘의 이해하기 쉬운 장점과 퍼지의 표현력을 결합하여 간결하고 이해하기 쉬운 규칙을 생성한다. 제안된 알고리즘은 히스토그램에 기반하여 퍼지 소속함수를 생성하는 단계와 생성된 소속 함수를 이용하여 퍼지 결정 트리를 구성하는 두 단계로 이루어진다. 또한 제안된 방법의 타당성을 검증하기 위하여 표준적인 패턴 분류 벤치마크 데이터인 Iris 데이터와 Wisconsin Breast Cancer 데이터에 대한 실험 결과를 보인다.

  • PDF

퍼지의사결정을 이용한 교량 구조물의 건전성평가 모델 (Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making)

  • 안영기;김성칠
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.1022-1031
    • /
    • 2002
  • 본 연구에서는 분규ㆍ회귀목-적응 뉴고 퍼지추론 시스템을 사용하여 교량 구조물에 대한 유용한 모델을 제시하였다. 퍼지결정목은 데이터집합의 입력영역이 서로 다른 영역으로 분류되고 하나의 부호나 값으로 나타내지며 데이터 정점에서 특정화시키기 위한 활동영역으로 할당되기도 한다. 분류문제로 사용되는 결정목은 가끔 퍼지결정목이라고 불려지는데, 각 최종점은 주어진 특정백터의 예측등급을 나타낸다. 회귀문제에 사용되는 결정목을 가끔 퍼지회귀목이라고 하는데, 이 때 최종점 영역은 주어진 입력백터의 예측 출력 값을 상수나 방정식으로 나타낼 수 있다. 분류ㆍ회귀목은 관련된 입력값을 선택하여 입력구역에서 분류 할 수 있는 반면에 적응 뉴로 퍼지추론 시스템은 회귀문제를 수정하고 이틀의 회귀문제를 보다 연속적이면서 간략하게 만들 수 있음을 주목해야 한다. 따라서 분류ㆍ회귀목과 적응 뉴로 퍼지추론 시스템은 서로 상보적인 것이며, 이들의 조합은 퍼지모델링을 위해 실직적인 근사식으로 구성된다.

퍼지의사결정나무 개선방법을 이용한 CRM 적용 사례 (Case Study of CRM Application Using Improvement Method of Fuzzy Decision Tree Analysis)

  • 양승정;이종태
    • 한국콘텐츠학회논문지
    • /
    • 제7권8호
    • /
    • pp.13-20
    • /
    • 2007
  • 의사결정나무는 대량의 데이터를 몇 개의 집단으로 분류하고, 미래상황을 예측하기 위해 자주 사용되는 분석기법 중의 하나이며, 각 노드에서 분할이 일어나면서 자라게 되고, 각 노드에 속하는 자료의 순수도가 효과적으로 증가하도록 진행된다. 또한 의사결정나무를 생성하는 과정에서 필요 이상의 가지(leaves)를 갖게 되면 노드의 분할을 정지하거나, 분류성능 향상에 큰 도움이 되지 못하는 가지를 잘라내게 된다. 이러한 가지치기의 결과로 의사결정나무의 형태가 변하게 되는데 이는 기존의 가지분할이 효율적이지 않았음을 의미하는 것이다. 본 연구에서는 가지치기의 교정뿐 아니라 새로운 분할과정을 혼합한 우수한 의사결정나무 추출 방법을 제안한다. 특히, 새로운 분할 노드의 선택에 있어 퍼지이론을 적용하여 분할의 효과성을 제고할 수 있는 방법을 제시하고자 한다.

다변량 퍼지 의사결정트리와 사용자 적응을 이용한 손동작 인식 (Hand Gesture Recognition using Multivariate Fuzzy Decision Tree and User Adaptation)

  • 전문진;도준형;이상완;박광현;변증남
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.81-90
    • /
    • 2008
  • While increasing demand of the service for the disabled and the elderly people, assistive technologies have been developed rapidly. The natural signal of human such as voice or gesture has been applied to the system for assisting the disabled and the elderly people. As an example of such kind of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in $KAIST^[1]$. This system is a vision-based hand gesture recognition system for controlling home appliances such as television, lamp and curtain. One of the most important technologies of the system is the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT) learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new user, the most proper recognition model among several well trained models is selected using model selection algorithm and incrementally adapted to the user's hand gesture. For the general performance of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository. For the performance of hand gesture recognition, we tested using hand gesture data which is collected from 10 people for 15 days. The experimental results show that the classification and user adaptation performance of proposed algorithm is better than general fuzzy decision tree.

  • PDF

FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스 (A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree)

  • 양석환;정목동
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.810-819
    • /
    • 2013
  • FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.

Macroscopic Recognition and Decision Making for the GO Game Moves

  • Nishino, Junji;Shirai, Haruhiko;Odka, Tomohiro;Ogura, Hisakazu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.674-679
    • /
    • 1998
  • In this paepr, we proposed a new way to make a pre-pruned searching tree for GO game moves from macroscopic strategy described in linguistic expression. The strategy was a consequence of macroscopic recognition of GO game situations. The definitions of fuzzy macroscopic strategy, fuzzy tactics and tactical sequences using fuzzy set are shown and its family, so called "multi level fuzzy set". Some examples are also shown.

  • PDF