• Title/Summary/Keyword: Fuzzy decision making

Search Result 422, Processing Time 0.017 seconds

Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting (도시 미세먼지 저감 식재를 위한 수종 선정 기준의 우선순위 도출)

  • Cho, Dong-Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.472-480
    • /
    • 2019
  • Selection of the plant material for planting to reduce fine dust should comprehensively consider the visual characteristics, such as the shape and texture of the plant leaves and form of bark, which affect the adsorption function of the plant. However, previous studies on reduction of fine dust through plants have focused on the absorption function rather than the adsorption function of plants and on foliage plants, which are indoor plants, rather than the outdoor plants. In particular, the criterion for selection of fine dust reduction species is not specific, so research on the selection criteria for plant materials for fine dust reduction in urban areas is needed. The purpose of this study is to identify the priorities of eight indicators that affect the fine dust reduction by using the fuzzy multi-criteria decision-making model (MCDM) and establish the tree selection criteria for the urban planting to reduce fine dust. For the purpose, we conducted a questionnaire survey of those who majored in fine dust-related academic fields and those with experience of researching fine dust. A result of the survey showed that the area of leaf and the tree species received the highest score as the factors that affect the fine dust reduction. They were followed by the surface roughness of leaves, tree height, growth rate, complexity of leaves, edge shape of leaves, and bark feature in that order. When selecting the species that have leaves with the coarse surface, it is better to select the trees with wooly, glossy, and waxy layers on the leaves. When considering the shape of the leaves, it is better to select the two-type or three-type leaves and palm-shaped leaves than the single-type leaves and to select the serrated leaves than the smooth edged leaves to increase the surface area for adsorbing fine dust in the air on the surface of the leaves. When considering the characteristics of the bark, it is better to select trees that have cork layers or show or are likely to show the bark loosening or cracks than to select those with lenticel or patterned barks. This study is significant in that it presents the priorities of the selection criteria of plant material based on the visual characteristics that affect the adsorption of fine dust for the planning of planting to reduce fine dust in the urban area. The results of this study can be used as basic data for the selection of trees for plantation planning in the urban area.

A Control Method for designing Object Interactions in 3D Game (3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법)

  • 김기현;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.322-331
    • /
    • 2003
  • As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.