• Title/Summary/Keyword: Fuzzy data mining

Search Result 90, Processing Time 0.022 seconds

Developing Takagi-Sugeno Fuzzy Model-Based Estimator for Short-Term Load Forecasting (단기부하예측을 위한 Tskagi-Sugeno 퍼지 모델 기반 예측기 설계)

  • 김도완;박진배;장권규;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.523-527
    • /
    • 2004
  • This paper presents a new design methods of the short-term load forecasting system (STLFS) using the data mining. The proposed predictor takes form of the convex combination of the linear time series predictors for each inputs. The problem of estimating the consequent parameters is formulated by the convex optimization problem, which is to minimize the norm distance between the real load and the output of the linear time series estimator, The problem of estimating the premise parameters is to find the parameter value minimizing the error between the real load and the overall output. Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

Ranking Tag Pairs for Music Recommendation Using Acoustic Similarity

  • Lee, Jaesung;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • The need for the recognition of music emotion has become apparent in many music information retrieval applications. In addition to the large pool of techniques that have already been developed in machine learning and data mining, various emerging applications have led to a wealth of newly proposed techniques. In the music information retrieval community, many studies and applications have concentrated on tag-based music recommendation. The limitation of music emotion tags is the ambiguity caused by a single music tag covering too many subcategories. To overcome this, multiple tags can be used simultaneously to specify music clips more precisely. In this paper, we propose a novel technique to rank the proper tag combinations based on the acoustic similarity of music clips.

Data Streams classification using Local Concept-adapted IOLIN System (지역적 컨셉트 적응형 IOLIN시스템을 사용한 데이터 스트림의 분류)

  • Kim, Jae-Woo;Song, Jae-Won;Lee, Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • Data stream has the tendency to change in Patterns over time. Also known as concept drift, such problem can reduce the predictive performance of a classification model CVFDT and IOLIN tried to solve the problem of a concept drift through incremental classification model updates. The local changes in patterns. however was revealed to be unable to resolve the problems of local concept drift that occurs by influencing on total classification results. In this paper, we propose adapted IOLIN system that improves system's predictive performance by detecting the local concept drift. The experimental result shows that adaptive IOLIN, the Proposed method, is about 2.8% in accuracy better than IOLIN and about 11.2% in accuracy better than CVFDT.

  • PDF

Performance Improvement of Freight Logistics Hub Selection in Thailand by Coordinated Simulation and AHP

  • Wanitwattanakosol, Jirapat;Holimchayachotikul, Pongsak;Nimsrikul, Phatchari;Sopadang, Apichat
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.88-96
    • /
    • 2010
  • This paper presents a two-phase quantitative framework to aid the decision making process for effective selection of an efficient freight logistics hub from 8 alternatives in Thailand on the North-South economic corridor. Phase 1 employs both multiple regression and Pearson Feature selection to find the important criteria, as defined by logistics hub score, and to reduce number of criteria by eliminating the less important criteria. The result of Pearson Feature selection indicated that only 5 of 15 criteria affected the logistics hub score. Moreover, Genetic Algorithm (GA) was constructed from original 15 criteria data set to find the relationship between logistics criteria and freight logistics hub score. As a result, the statistical tools are provided the same 5 important criteria, affecting logistics hub score from GA, and data mining tool. Phase 2 performs the fuzzy stochastic AHP analysis with the five important criteria. This approach could help to gain insight into how the imprecision in judgment ratios may affect their alternatives toward the best solution and how the best alternative may be identified with certain confidence. The main objective of the paper is to find the best alternative for selecting freight logistics hub under proper criteria. The experimental results show that by using this approach, Chiang Mai province is the best place with the confidence interval 95%.

A Multimedia Recommender System Using User Playback Time (사용자의 재생 시간을 이용한 멀티미디어 추천 시스템)

  • Kwon, Hyeong-Joon;Chung, Dong-Keun;Hong, Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.111-121
    • /
    • 2009
  • In this paper, we propose a multimedia recommender system using user's playback time. Proposed system collects multimedia content which is requested by user and its user‘s playback time, as web log data. The system predicts playback time.based preference level and related contents from collected transaction database by fuzzy association rule mining. Proposed method has a merit which sorts recommendation list according to preference without user’s custom preference data, and prevents a false preference. As an experimental result, we confirm that proposed system discovers useful rules and applies them to recommender system from a transaction which doesn‘t include custom preferences.

  • PDF

A Study on the Improving Method of Academic Effect based on Arduino sensors (아두이노 센서 기반 학업 효과 개선 방안 연구)

  • Bae, Youngchul;Hong, YouSik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • The research for the improvement in math and science scores is active by the brain exercises, stress reliefs, and emotion sensitized illuminations. This principle is based on the following facts that the most effective brain turns are supported with the circumstances not only when the brain wave should keep stability and comfort in science criticism, but also when minimized stress and comfortable illumination should be adjusted in solving math problem. In this paper, in order to effectively learn mathematics and science, the most optimized simulating tests in learning conditions are conducted by using a stress relief. However, depending on the users' tastes, the effectiveness on favorite music or colors therapy have no convergency but many differentiations. Therefore, in this paper, in order to solve this problem, the proposed optimal illumination and music therapy treatment using fuzzy inference method.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

lustering of Categorical Data using Rough Entropy (러프 엔트로피를 이용한 범주형 데이터의 클러스터링)

  • Park, Inkyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.183-188
    • /
    • 2013
  • A variety of cluster analysis techniques prerequisite to cluster objects having similar characteristics in data mining. But the clustering of those algorithms have lots of difficulties in dealing with categorical data within the databases. The imprecise handling of uncertainty within categorical data in the clustering process stems from the only algebraic logic of rough set, resulting in the degradation of stability and effectiveness. This paper proposes a information-theoretic rough entropy(RE) by taking into account the dependency of attributes and proposes a technique called min-mean-mean roughness(MMMR) for selecting clustering attribute. We analyze and compare the performance of the proposed technique with K-means, fuzzy techniques and other standard deviation roughness methods based on ZOO dataset. The results verify the better performance of the proposed approach.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.