• Title/Summary/Keyword: Fuzzy control technique

Search Result 522, Processing Time 0.028 seconds

Fuzzy Control Strategy for Damping Sub-Synchronous Resonance

  • Qader, M.R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1791-1797
    • /
    • 2018
  • Sub-Synchronous Resonance (SSR) is a phenomenon that harms turbine generator shafts because the phenomenon induces sub-synchronous wavering in the system. In the study presented in this paper, a dynamic resistance bank is used to mitigate the occurrence of sub-synchronous phenomenon. A fuzzy logic controller using rotor speed deviation and its derivative as inputs is implemented to damp sub-synchronous oscillations more efficiently. An eigenvalue technique is used to analyse the stability of the system, and a simulation in MATLAB is conducted, based on the IEEE Second Benchmark, to validate the effectiveness of the proposed method under a 3-phase fault condition at an infinite bus. The time-domain simulation and eigenvalues are used to observe the proposed method's superior ability to damp sub-synchronous oscillation.

Power System Stabilization using Self Tuning Fuzzy Controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • Chung, H.H.;Chung, D.I.;Joo, S.M.;Koh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.48-50
    • /
    • 1994
  • In this paper, the optimal fuzzy controller of exciter and governor in synchronous generator improve the stability of power system with varying loads and disturbances in power system. Parameters of the proposed fuzzy controller were optimally self-tuned by the steepest descent method and were applied to power system stabilization. The related simulation results show that the proposed control technique are more powerful than the conventional ones for reductions of undershoot and for minimization of settling time.

  • PDF

Expert Systems as a Search Intermediary

  • Moon, Sung-Been
    • Journal of Information Management
    • /
    • v.24 no.4
    • /
    • pp.43-57
    • /
    • 1993
  • This paper discusses the basic concept of artificial intelligence(AI) and expert system and a particular technique(fuzzy logic) applied to expert systems. It examines expert system as search intermediaries during the past few years, particularly in terms of the following functions: 1) handling certain classes of questions on a particular database, 2) assisting in decision making for selecting databases or search terms, and 3) offering advice while keeping the end-user in the control of the searching process. The limitations and difficulties involved in developing such expert systems are also presented.

  • PDF

Optimization of parameters in mobile robot navigation using genetic algorithm (유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning (확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법)

  • Lee, Hyong-Euk;Kim, Yong-Hwi;Lee, Tae-Youb;Park, Kwang-Hyun;Kim, Yong-Soo;Cho, Joon-Myun;Bien, Z. Zenn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.244-251
    • /
    • 2007
  • Intention reading technique is essential to provide personalized services toward more convenient and human-friendly services in complex ubiquitous environment such as a smart home. If a system has knowledge about an user's intention of his/her behavioral pattern, the system can provide mote qualified and satisfactory services automatically in advance to the user's explicit command. In this sense, learning capability is considered as a key function for the intention reading technique in view of knowledge discovery. In this paper, ore introduce a personalized media control method for a possible application iii a smart home. Note that data pattern such as human behavior contains lots of inconsistent data due to limitation of feature extraction and insufficiently available features, where separable data groups are intermingled with inseparable data groups. To deal with such a data pattern, we introduce an effective engineering approach with the combination of fuzzy logic and probabilistic reasoning. The proposed learning system, which is based on IFCS (Iterative Fuzzy Clustering with Supervision) algorithm, extract probabilistic fuzzy rules effectively from the given numerical training data pattern. Furthermore, an extended architectural design methodology of the learning system incorporating with the IFCS algorithm are introduced. Finally, experimental results of the media contents recommendation system are given to show the effectiveness of the proposed system.

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms

  • Askari, Mohsen;Li, Jianchun;Samali, Bijan
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1005-1028
    • /
    • 2016
  • Two novel semi-active control methods for a seismically excited nonlinear benchmark building equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the required voltage input for the damper to produce such desired control force is achieved using two different methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage regulator introduced here works based on the maximum and minimum capacities of MR damper at each time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events, compared with the passive systems and performs better than original and Modified clipped optimal controller systems, known as COC and MCOC.

An Unmanned Turning Process Technique Based on Spindle Motor Power Characteristics (주축 모터 출력 특성에 근거한 무인 선삭 가공 기술)

  • 박장호;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.8-13
    • /
    • 2001
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results present that these systems can be useful for the FMS(flexible manufacturing system) and unmanned automation system.

  • PDF

Intuitionistic Fuzzy Expert System based Fault Diagnosis using Dissolved Gas Analysis for Power Transformer

  • Mani, Geetha;Jerome, Jovitha
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2058-2064
    • /
    • 2014
  • In transformer fault diagnosis, dissolved gas analysis (DGA) is been widely employed for a long period and numerous methods have been innovated to interpret its results. Still in some cases it fails to identify the corresponding faults. Due to the limitation of training data and non-linearity, the estimation of key-gas ratio in the transformer oil becomes more complicated. This paper presents Intuitionistic Fuzzy expert System (IFS) to diagnose several faults in a transformer. This revised approach is well suitable to diagnosis the transformer faults and the corresponding action to be taken. The proposed method is applied to an independent data of different power transformers and various case studies of historic trends of transformer units. It has been proved to be a very advantageous tool for transformer diagnosis and upkeep planning. This method has been successfully used to identify the type of fault developing within a transformer even if there is conflict in the results of AI technique applied to DGA data.