• 제목/요약/키워드: Fuzzy control algorithm

검색결과 1,501건 처리시간 0.041초

AGV시스템에서 적응 규칙을 갖는 퍼지 급송알고리듬에 관한 연구 (A Fuzzy Dispatching Algorithm with Adaptive Control Rule for Automated Guided Vehicle System in Job Shop Environment)

  • 김대범
    • 한국시뮬레이션학회논문지
    • /
    • 제9권1호
    • /
    • pp.21-38
    • /
    • 2000
  • A fuzzy dispatching algorithm with adaptable control scheme is proposed for more flexible and adaptable operation of AGV system. The basic idea of the algorithm is prioritization of all move requests based on the fuzzy urgency. The fuzzy urgency is measured by the fuzzy multi-criteria decision-making method, utilizing the relevant information such as incoming and outgoing buffer status, elapsed time of move request, and AGV traveling distance. At every dispatching decision point, the algorithm prioritizes all move requests based on the fuzzy urgency. The performance of the proposed algorithm is compared with several dispatching algorithms in terms of system throughput in a hypothetical job shop environment. Simulation experiments are carried out varying the level of criticality ratio of AGVs , the numbers of AGVs, and the buffer capacities. The rule presented in this study appears to be more effective for dispatching AGVs than the other rules.

  • PDF

소속함수 수정 알고리즘과 ANFIS를 이용한 퍼지논리 제어기의 설계 (Design of FLC using the Membership function modification algorithm and ANFIS)

  • 최완규;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.43-46
    • /
    • 2001
  • We, in this paper, design the Sugeno-models fuzzy controller by using the membership function modification algorithm and ANFIS, which are clustering and learning the input-output data. The membership function modification algorithm constructs the more concrete fuzzy controller by clustering the input-output data from the fuzzy inference system. ANFIS construct the Sugeno-models fuzzy controller by learning the input-output data from the above controller. We showed that the fuzzy controller designed by our method could have the stable learning and the enhanced performance.

  • PDF

Fuzzy Gain Scheduling of Velocity PI Controller with Intelligent Learning Algorithm for Reactor Control

  • Kim, Dong-Yun;Seong, Poong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.73-78
    • /
    • 1996
  • In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller.

  • PDF

비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어 (Adaptive fuzzy sliding mode control for nonlinear systems)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.684-688
    • /
    • 1996
  • In this paper, to overcome drawbacks of variable structure control system a self-tuning fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to a one-degree of freedom robot arm. The results show that both alleviation of chattering and performance are achieved.

  • PDF

구륜 이동 로보트의 경로 추적을 위한 Fuzzy-Genetic Controller 설계 (Design fuzzy-genetic controller for path tracking in wheeled-mobile robot)

  • 김상원;김성희;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.512-515
    • /
    • 1997
  • In this paper the fuzzy-genetic controller for path-tracking of WMRs is proposed. Fuzzy controller is implemented to adaptive adjust the crossover rate and mutation rate, and genetic algorithm is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-genetic controller is effective.

  • PDF

퍼지제어기를 이용한 이동로봇의 이동계획 설계 (Moving Plan Design of Autonomous Mobile Robot Using Fuzzy Controller)

  • 박경석;이경웅;정헌;최한수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.38-41
    • /
    • 2003
  • An Autonomous Mobile Robot(AMR) performs duty by sensing a recognized situation and controlling suitably. The existing algorithm has some advantages that it is possible to express the obstacle exactly and the robot is sensitive to the change of environment. However, this algorithm needs to control repeatedly according to the modelling and working environment that requires a great quantity of calculations. In this paper, We supplement shortcoming and designed direction algorithm of AMR using fuzzy controller. Fuzzy controller does not derive special quality spinning expression for system, and uses rules by value expressed by language. It is used extensively to non-linear, plant which mathematical modelling is difficult etc... Fuzzy control algorithm of AMR that is used by this research applies obstacle position, distance of obstacle, Progress direction of robot, speed of robot, Perception area of sensor, etc... by fuzzy control and decide steering angle of robot.

  • PDF

Fuzzy-Sliding Mode Control of Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.173-176
    • /
    • 1999
  • This paper shows a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a Polishing robot. Using this method, the number of inference rules and the shape of membership functions are determined by the genetic algorithm. The fuzzy outputs of the consequent part are derived by the gradient descent method. Also, it is guaranteed that .the selected solution become the global optimal solution by optimizing the Akaike's information criterion expressing the quality of the inference rules. It is shown by simulations that the method of fuzzy inference by the genetic algorithm provides better learning capability than the trial and error method.

  • PDF

Clustering 기법과 Fuzzy 기법을 이용한 영상 분할과 라벨링 (Image Segmentation and Labeling Using Clustering and Fuzzy Algorithm)

  • 이성규;김동기;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.241-241
    • /
    • 2000
  • In this Paper, we present a new efficient algorithm that can segment an object in the image. There are many algorithms for segmentation and many studies for criteria or threshold value. But, if the environment or brightness is changed, their would not be suitable. Accordingly, we apply a clustering algorithm for adopting and compensating environmental factors. And applying labeling method, we try arranging segment by the similarity that calculated with the fuzzy algorithm. we also present simulations for searching an object and show that the algorithm is somewhat more efficient than the other algorithm.

  • PDF

유전자 알고리즘과 퍼지 논리 제어기를 이용한 지능 제어 방식 (Intelligent Control Method Using Genetic Algorithm and Fuzzy Logic Controller)

  • 김주웅;이승형;엄기환
    • 한국정보통신학회논문지
    • /
    • 제5권7호
    • /
    • pp.1374-1383
    • /
    • 2001
  • 기존의 제어방식 보다 강인성이 우수한 퍼지 논리 제어방식에서 최적화되지 않은 제어규칙을 이용하여, 오프라인 상에서 소속함수 관계와 스케일링 팩터를 유전자알고리즘으로 최적화한 후, 온라인으로 퍼지제어기를 구성하는 제어방식을 제안하였다. 제안한 방식을 단일 링크 매니률레이터의 추종제어에 적용하여 기존 퍼지제어 방식과 비교 검토한 결과 퍼지제어규칙의 수도 감소하고 제어성능도 우수함을 확인하였다.

  • PDF

로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구 (A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.