• Title/Summary/Keyword: Fuzzy color

Search Result 209, Processing Time 0.03 seconds

Color Analysis with Enhanced Fuzzy Inference Method (개선된 퍼지 추론 기법을 이용한 칼라 분석)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.25-31
    • /
    • 2009
  • Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself-the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

Improved Cancellation of Impulse Noise Using Rank-Order Method (Rank-Order 방법을 이용한 개선된 임펄스 잡음 제거)

  • Ko, Kyung-Woo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This paper proposes a cancellation algorithm of impulse noise using a rank-order method. The proposed method is a fast and simple algorithm that is composed of two parts. The first part involves noise detection using a fuzzy technique, where an image is divided into RGB color channels. Then every pixel in each color channel is investigated and assigned a probability indicating its chances of being a noise pixel. At this time, the rank order method using a noise-detection mask is utilized for accurate noise detection. Thereafter, the second part involves noise-cancellation, where each noise-pixel value in an image is replaced in proportion to its fuzzy probability. Through the experiments, both the conventional and proposed methods were simulated and compared. As a result, it is shown that proposed method is able to detect noisy pixels more accurately, and produce resulting images with high PSNR values.

Implementation of Fuzzy Classifier and Automatic Turning for Urine Analyzer System using the Strip (스트립을 이용한 뇨분석 시스템의 퍼지 분류기 및 자동 튜닝 구현)

  • Kim, K.W.;Lee, S.J.;Kim, K.N.;Choi, B.C.;Ye, S.Y.;Jun, K.R.;Cho, J.W.;Kim, J.H.;Lee, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.141-142
    • /
    • 1998
  • The urine analysis system implemented to measuring the primary color reaction of urinalysis strip. Fuzzy classifier based on fuzzy theory implemented so as to classify of 9 items in the urinalysis strip and proposed the automatic turning algorithm of mambership function in the fuzzy classifier to progress the reproduction of classify. To evaluation of clinical capability, the fuzzy classifier and automatic turning algorithm apples to standard strip and standard reagent.

  • PDF

Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm (뉴로퍼지학습 알고리듬을 이용한 연소상태진단)

  • Lee, Tae-Yeong;Kim, Seong-Hwan;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

Human Tracking using Multiple-Camera-Based Global Color Model in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and intelligent space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Extraction of Lip Region using Chromaticity Transformation and Fuzzy Clustering (색도 변환과 퍼지 클러스터링을 이용한 입술영역 추출)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.806-817
    • /
    • 2014
  • The extraction of lip region is essential to Lip Reading, which is a field of image processing to get some meaningful information by the analysis of lip movement from human face image. Many conventional methods to extract lip region are proposed. One is getting the position of lip by using geometric face structure. The other discriminates lip and skin regions by using color information only. The former is more complex than the latter, however it can analyze black and white image also. The latter is very simple compared to the former, however it is very difficult to discriminate lip and skin regions because of close similarity between these two regions. And also, the accuracy is relatively low compared to the former. Conventional analysis of color coordinate systems are mostly based on specific extraction scheme for lip regions rather than coordinate system itself. In this paper, the method for selection of effective color coordinate system and chromaticity transformation to discriminate these two lip and skin region are proposed.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • This paper describes a system for tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

A New Vehicle Detection Method based on Color Integral Histogram

  • Hwang, Jae-Pil;Ryu, Kyung-Jin;Park, Seong-Keun;Kim, Eun-Tai;Kang, Hyung-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.248-253
    • /
    • 2008
  • In this paper, a novel vehicle detection algorithm is proposed that utilizes the color histogram of the image. The color histogram is used to search the image for regions with shadow, block symmetry, and block non-homogeneity, thereby detecting the vehicle region. First, an integral histogram of the input image is computed to decrease the amount of required computation time for the block color histograms. Then, shadow detection is performed and the block symmetry and block non-homogeneity are checked in a cascade manner to detect the vehicle in the image. Finally, the proposed scheme is applied to both still images taken in a parking lot and an on-road video sequence to demonstrate its effectiveness.

A Study on the Customer's Satisfaction of the Tableware on Foodstyling using Fuzzy cognitive Maps (퍼지인식도를 이용한 음식이 담겨진 그릇, 음식, 테이블보가 고객만족에 미치는 영향)

  • Kim, Sun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2006
  • The purpose of this study, where the subjects are people with the job related to cooking or are culinary expert, is to investigate factors that influence consumer's satisfaction on the tableware seen on broadcast, magazine, food service industry and/or other media. First, this study demonstrates three factors that influence on consumer's satisfaction : first factors of the shape, the color, the size of the tableware, second factors of the shape, the color, the quality of the food, third factors of the design, the color, and the quality of the tablecloth.Lastly, this study shows satisfaction that can be affected between the tableware and the food, between the food and the tablecloth, and between the tablecloth and the tableware.In conclusion, the primary factors that influence on consumer's satisfaction are the color of the food, tableware, and tablecloth, that reflects that visual role plays an important role in the food service industry. From now on. more study that will go into details is expected.

Red Tide Blooms Prediction using Fuzzy Reasoning (퍼지 추론을 이용한 적조 발생 예측)

  • Park, Sun;Lee, Seong-Ro
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.291-294
    • /
    • 2011
  • Red tide is a temporary natural phenomenon to change sea color by harmful algal blooms, which finfish and shellfish die en masse. There have been many studies on red tide due to increasing of harmful algae damage of fisheries in Korea. Particularly, red tide damage can be minimized by means of prediction of red tide blooms. However, the most of red tide research in Korea has been focused only classification of red tide which it is not enough for predicting red tide blooms. In this paper, we proposed the red tide blooms prediction method using fuzzy reasoning.