• 제목/요약/키워드: Fuzzy c-means Clustering Method

검색결과 180건 처리시간 0.025초

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

대학 강의평가에서 문항 추출에 관한 연구 (A Study on Effective Selection of University Lecture Evaluation)

  • 황세명;김인택
    • 공학교육연구
    • /
    • 제8권1호
    • /
    • pp.31-45
    • /
    • 2005
  • 본 논문에서는, 강의 평가에 필요한 설문을 효과적이며 체계적으로 얻기 위한, 대표 문항 추출 방법을 비교하였다. 비교에 사용한 방법은 요인분석(Factor Analysis: FA), FCM(Fuzzy c-Means) 알고리즘과 군집분석(Cluster Analysis : CA) 등으로 이러한 방법들을 사용하여 고려할 수 있는 다양한 형태의 많은 문항들로부터 적은 수의 문항을 추출한다. 추출된 문항은 많은 수의 문항들이 형성하는 클러스터의 대표 문항을 이루고 있다. 이를 위해 여러 개의 설문지로부터 얻은 120 문항의 강의 평가서를 명지대학교 외 3 개 대학교 646명의 학생들에게 평가를 실시하여 데이터를 얻었는데 학생들은 주어진 문항에 대하여 "매우 그렇다", "그렇다", "보통이다", "그렇지 않다", "매우 그렇지 않다", 그리고 "해당 없다"까지의 6등급으로 응답하였다. 각 문항에 대한 학생들의 응답 성향을 분석하여 약 25문항을 추출하였다. 실험 결과 본 논문에서 비교 분석한 요인분석, FCM알고리즘과 군집분석 등의 기법은 매우 유사한 설문을 추출할 수 있었다.

FCM 알고리즘을 이용한 요부 근육 양자화 (Quantization of Lumbar Muscle using FCM Algorithm)

  • 김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.27-31
    • /
    • 2013
  • 본 논문에서는 요부 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에 나타낸다. 본 논문에서 제안하는 기법과 히스토그램 기반 양자화 기법에 대해 15장의 요부 초음파 영상에 적용한 결과, 본 논문에서 제안된 양자화 방법이 효과적인 것을 확인할 수 있었다.

유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링 (Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System)

  • 곽근창;이대종;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.491-499
    • /
    • 2001
  • 본 논문에서는 유전알고리즘(Genetic Algorithm)과 FCM(Fuzzy c-means) 클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이처 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 유전알고리즘을 이용하여 전제부 파라미터를 최적에 가깝도록 탐색을 시도한다. 결론부 파라미터는 유전알고리즘에 의한 탐색공간을 줄이기 위해 전제부 파라미터가 결정되면 PLSE(Recursive Least Square Estimate)에 의해 추정되어진다. 이렇게 함으로서 타당한 규칙 수와 효율적인 퍼지 규칙을 얻을 수 있다. 제안된 방법의 유용성을 보이기 위해 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하여 이전의 연구보다 좋은 결과를 보임을 알 수 있었다.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

A Fuzzy Clustering Method based on Genetic Algorithm

  • Jo, Jung-Bok;Do, Kyeong-Hoon;Linhu Zhao;Mitsuo Gen
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1025-1028
    • /
    • 2000
  • In this paper, we apply to a genetic algorithm for fuzzy clustering. We propose initialization procedure and genetic operators such as selection, crossover and mutation, which are suitable for solving the problems. To illustrate the effectiveness of the proposed algorithm, we solve the manufacturing cell formation problem and present computational comparisons to generalized Fuzzy c-Means algorithm.

  • PDF

정보 입자 기반 퍼지 모델의 하이브리드 동정 (Hybird Identification of IG baed Fuzzy Model)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2885-2887
    • /
    • 2005
  • We introduce a hybrid identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of HCM clustering help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the GAs and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘 (Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm)

  • 박기원;황건용
    • 한국멀티미디어학회논문지
    • /
    • 제19권1호
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.

퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적 (Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm)

  • 이성민;성일;주영훈
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.