• 제목/요약/키워드: Fuzzy c-Means clustering

검색결과 310건 처리시간 0.025초

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

클러스터 중심 왜곡 저감을 위한 클러스터링 기법 (Clustering Method for Reduction of Cluster Center Distortion)

  • 정혜천;서석태;이인근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.354-359
    • /
    • 2008
  • 클러스터링은 주어진 임의의 데이터 중에서 유사한 성질을 지닌 데이터를 복수개의 그룹으로 조직화하는 기법이다. 이를 위해 K-Means, Fuzzy C-Means(FCM), Mountain Method(MM) 등과 같은 많은 기법들이 제안되었고 또한 널리 사용되어지고 있다. 그러나 이러한 기법들은 초기값에 따라 클러스터링 결과가 크게 달라지는 단점이 있다. 특히 가장 널리 사용되는 FCM 기법은 잡음 데이터에 취약하며, 주어진 입력 데이터의 클러스터 내부분산을 최소화 하는 방법을 사용하기 때문에 클러스터링 중심의 왜곡 현상이 발생한다. 본 논문에서는 데이터 가중치에 근거한 비례적 근접데이터 병합을 통하여 클러스터 중심 왜곡을 저감하며 초기값에 영향을 받지 않는 클러스터링 기법을 제안한다. 그리고 FCM으로 얻어진 클러스터 중심과 제안기법을 적용하여 얻어진 클러스터 중심에 대한 비교 검토를 통하여 제안기법의 효용성을 확인한다.

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출 (Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks)

  • 최정내;김영일;오성권;김정태
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Classification of Fuzzy Logic on the Optimized Bead Geometry in the Gas Metal Arc Welding

  • Yu Xue;Kim, Ill-Soo;Park, Chang-Eun;Kim, In-Ju;Son, Joon-Sik
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.225-232
    • /
    • 2004
  • Recently, there has been a rapid development in computer technology, which has in turn led to develop the automated welding system using Artificial Intelligence (AI). However, the automated welding system has not been achieved duo to difficulties of the control and sensor technologies. In this paper, the classification of the optimized bead geometry such as bead width, height penetration and bead area in the Gas Metal Arc (GMA) welding with fuzzy logic is presented. The fuzzy C-Means algorithm (FCM), which is best known an unsupervised fuzzy clustering algorithm is employed here to analysis the specimen of the bead geometry. Then the quality of the GMA welding can be classified by this fuzzy clustering technique and the choice for obtaining the optimal bead geometry can also be determined.

  • PDF

FCM법에 의한 항만의 분류 및 그 특성 분석에 관한 연구 (A Study on the Classification of Ports and its Characteristics using Fuzzy C-Means)

  • 금종수;윤명오;양원재
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.143-154
    • /
    • 2000
  • In port management, the scale of facilities and port layouts are major factors characterizing the port, which influence port economics and productivities continuously through the port operation. Grouping ports in certain region by their characteristics could be used as the principal informations to establish national policy for port development or investment and also to analyze the competitiveness between ports. Currently Korean ports are divided into two groups such as the local port and the designated port containing foreign trade port and coastal port under the Korean port law. These divisions seem to be used for port administration as the matter of convenience but some qualitative grouping is needed for research of port problems. In this paper, 20 major Korean ports were clustered by the similar characteristics using Fuzzy C-Means and found to be classified 8 qualitative groups.

  • PDF

FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스 (A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree)

  • 양석환;정목동
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.810-819
    • /
    • 2013
  • FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.

무선 센서 네트워크의 최적화 노드배치에 관한 연구 (A Study On The Optimum Node Deployment In The Wireless Sensor Network System)

  • 최원갑;박형무
    • 전기전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.100-107
    • /
    • 2007
  • 무선 센서 네트워크에서 중요한 문제 중 하나는 센서 노드들의 최적 배치, 즉 측정하고자 하는 지역을 모두 커버할 수 있는 최소 센서 노드 수를 산출하고 배치 위치를 결정하는 일이다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 제안한 Fuzzy C-Means 클러스터링을 이용하여 측정하고자 하는 지역에서의 최적의 노드 배치와 최소 노드의 수를 시뮬레이션을 통해 도출하였고, 실험을 통하여 검증하였다. 시뮬레이션은 3가지 타입의 2차원 지역을 모델로 하여 수행하였다. 모델링한 지역은 6M${\times}$10M의 직사각형, 50M${\times}$20M의 직사각형, 100M${\times}$80M의 ‘L’ 자 형태의 지역으로 하였으며, 각각 9개, 9개, 15개 노드의 위치를 결정하였다. 실제 실험결과 각 지역에 대해서 94.6%, 92.2%, 95.7%의 정확도를 가진 통신 연결을 확인할 수 있었다.

  • PDF

Fuzzy c-means 알고리즘을 이용한 TCS 데이터 주행특성 분류 방법 연구 (Driving Characteristics Classification of TCS Data Based on Fuzzy c-means Clustering Algorithm)

  • 박원식;김동근;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1021-1024
    • /
    • 2009
  • 현재 사용되고 있는 통행시간 분류방법은 하나의 통행시간을 대푯값으로 가지고 있다. 이에 문제점은 고속도로 특성으로 규정 속도 이상의 속도로 주행하는 차량, 규정 속도 및 휴게소 이용차량, 운전자의 운전 습성, 통행 목적, 피로의 정도, 운전자 성향과 도로상황에 따라 통행시간이 다르게 나타나는 점이다. TCS(Toll Collection System) 자료는 고속도로의 다양한 특성이 포함되어 있으며, 대상 구간의 거리가 멀수록 목적지에 도달하는 통행시간의 분산이 커지는 특성 또한 보인다. 따라서 이를 처리하기 위한 효율적인 통행시간 분류, 구간대표통행시간 추출 알고리즘이 필요하다. 기존의 방법은 전체 통행차량의 통행시간을 감안한 방법으로 통행시간 예측시 정확성이 저하된다. 본 연구에서는 TCS 자료를 Fuzzy c-means 알고리즘을 이용하여 일일 고속도로 통행시간의 시간별 주행특성을 고려한 대푯 값을 추출하는 알고리즘을 제안하였다. 실제 서울-청주 구간을 운행한 TCS 자료를 가지고 실시한 실험으로, 주행특성 및 도로상황을 고려한 Fuzzy c-means를 이용한 통행시간 분류방법과 기존의 통행시간 분류 방법을 통한 통행시간을 PIFAB를 사용 TCS 자료의 실제 통행시간과 경로통행시간을 비교 평가하였다. 평가한 결과 본 연구에서 제안하는 Fuzzy c-means기법은 기존 방법인 MAD기법보다 75%, 신뢰구간(95%) 추출법 대비 81%의 정확성을 제고하였다.