• Title/Summary/Keyword: Fuzzy and Neural Network

Search Result 1,167, Processing Time 0.03 seconds

The Structure and Parameter Optimization of the Fuzzy-Neuro Controller (퍼지 신경망 제어기의 구조 및 매개 변수 최적화)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

A Fuzzy-ARTMAP Equalizer for Compensating the Nonlinearity of Satellite Communication Channel

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1078-1084
    • /
    • 2001
  • In this paper, fuzzy-ARTMAP neural network is applied for compensating the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is made of using fuzzy logic and ART neural network. By a match tracking process with vigilance parameter, fuzzy ARTMAP neural network achieves a minimax learning rule that minimizes predictive error and maximizes generalization. Thus, the system automatically learns a minimal number of recognition categories, or hidden units, to meet accuracy criteria. Simulation studies are performed over satellite nonlinear channels. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP-basis equalizers.

  • PDF

Adaptive FNN Controller for High Performance Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기)

  • 이정철;이홍균;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Fuzzy Neural Network Using a Learning Rule utilizing Selective Learning Rate (선택적 학습률을 활용한 학습법칙을 사용한 신경회로망)

  • Baek, Young-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.672-676
    • /
    • 2010
  • This paper presents a learning rule that weights more on data near decision boundary. This learning rule generates better decision boundary by reducing the effect of outliers on the decision boundary. The proposed learning rule is integrated into IAFC neural network. IAFC neural network is stable to maintain previous learning results and is plastic to learn new data. The performance of the proposed fuzzy neural network is compared with performances of LVQ neural network and backpropagation neural network. The results show that the performance of the proposed fuzzy neural network is better than those of LVQ neural network and backpropagation neural network.

Automatic Determination of Coagulant Dosing Rate Using Fuzzy Neural Network (Fuzzy Neural Network에 응집제 투입률의 자동결정)

  • Chung, Woo-Seop;Oh, Sueg-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • Recently, as the raw water quality becomes to be polluted and the seasonal and local variation of water quality becomes to be severe, an exact control of coagulant dosing have been required in the water treat- ment plant. The amounts of coagulant is related to the raw water quality such as turbidity, alkalinity, water temperature, pH and edectrical conductivity. However the process of chemical reaction has not been clarified so far, so the dosing rate has been decided by jar-test, which is taken one or two hours. For the sake of this coagulant dosing control, fuzzy neural network to fuse fuzzy logic and neural network was proposed, and the scheme was applied to automatic determination of coagulant dosing rate. This controller can automatically identify the if-then rules and tune the membership functions by utilizing expert's cintrol data. It is shown that determination of coagulant dosing rate according to real time sensing of water quality is very effect.

  • PDF

MPPT Control of Photovoltaic by FNN (FNN에 의한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Neural Network based Fuzzy Type PID Controller Design (신경 회로망 기반 퍼지형 PID 제어기 설계)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF