• Title/Summary/Keyword: Fuzzy Sets

Search Result 784, Processing Time 0.024 seconds

A Reusability Measurement of the Reused Component by Employing Rough and Fuzzy Sets (러프와 퍼지 집합을 이용한 재사용 컴포넌트의 재사용도 측정)

  • Kim, Hye-Gyeong;Choe, Wan-Gyu;Lee, Seong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2365-2372
    • /
    • 1999
  • The reusability measurement model should satisfy the following conditions : 1) can insert and delete metrics and components easily, 2) can compare and evaluate components quantitatively on the basis of validation, 3) don't require certain preassumed knowledge, and 4) can compute significance of each measurement attribute objectively. Therefore, in this paper, we propose a new reusability measurement model that can satisfy the above requirements. Our model selects the appropriate measurement attributes and calculates the relative significance of them by using rough set. Then, in order to measure the reusability of component, it integrates the significance of attributes and the measured value of them by using fuzzy integral. Finally, we apply our model to the reusability measurement of the function-oriented components and validate our model through statistical technique.

  • PDF

Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script

  • Kumar, Rajiv;Ravulakollu, Kiran Kumar;Bhat, Rajesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.893-913
    • /
    • 2017
  • The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

The aplication of fuzzy classification methods to spatial analysis (공간분석을 위한 퍼지분류의 이론적 배경과 적용에 관한 연구 - 경상남도 邑級以上 도시의 기능분류를 중심으로 -)

  • ;Jung, In-Chul
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.296-310
    • /
    • 1995
  • Classification of spatial units into meaningful sets is an important procedure in spatial analysis. It is crucial in characterizing and identifying spatial structures. But traditional classification methods such as cluster analysis require an exact database and impose a clear-cut boundary between classes. Scrutiny of realistic classification problems, however, reveals that available infermation may be vague and that the boundary may be ambiguous. The weakness of conventional methods is that they fail to capture the fuzzy data and the transition between classes. Fuzzy subsets theory is useful for solving these problems. This paper aims to come to the understanding of theoretical foundations of fuzzy spatial analysis, and to find the characteristics of fuzzy classification methods. It attempts to do so through the literature review and the case study of urban classification of the Cities and Eups of Kyung-Nam Province. The main findings are summarized as follows: 1. Following Dubois and Prade, fuzzy information has an imprecise and/or uncertain evaluation. In geography, fuzzy informations about spatial organization, geographical space perception and human behavior are frequent. But the researcher limits his work to numerical data processing and he does not consider spatial fringe. Fuzzy spatial analysis makes it possible to include the interface of groups in classification. 2. Fuzzy numerical taxonomic method is settled by Deloche, Tranquis, Ponsard and Leung. Depending on the data and the method employed, groups derived may be mutually exclusive or they may overlap to a certain degree. Classification pattern can be derived for each degree of similarity/distance $\alpha$. By takina the values of $\alpha$ in ascending or descending order, the hierarchical classification is obtained. 3. Kyung-Nam Cities and Eups were classified by fuzzy discrete classification, fuzzy conjoint classification and cluster analysis according to the ratio of number of persons employed in industries. As a result, they were divided into several groups which had homogeneous characteristies. Fuzzy discrete classification and cluste-analysis give clear-cut boundary, but fuzzy conjoint classification delimit the edges and cores of urban classification. 4. The results of different methods are varied. But each method contributes to the revealing the transparence of spatial structure. Through the result of three kinds of classification, Chung-mu city which has special characteristics and the group of Industrial cities composed by Changwon, Ulsan, Masan, Chinhai, Kimhai, Yangsan, Ungsang, Changsungpo and Shinhyun are evident in common. Even though the appraisal of the fuzzy classification methods, this framework appears to be more realistic and flexible in preserving information pertinent to urban classification.

  • PDF

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

Classification of Music Data using Fuzzy c-Means with Divergence Kernel (분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, he classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate hat the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73%-21.84% on average in terms of classification accuracy.

A Study on the Geostatistical Evaluation of Urban and Environmental Structure of Taegu Metropolitan Region (대구광역도시권의 지리통계적 도시환경구조 평가에 관한 연구)

  • Park, In-Hwan;Jang, Gab-Sue
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • This study was carried out to evaluate urban environmental structure in Taegu metropolitan region(TMR) with factor analysis, fuzzy set theory, geostatistic and geographic information system(GIS). The factor analysis could choose the representative one out of multiple variables and simplify the evaluation of the urban environmental structure. The fuzzy approach is an attempt to model an aspect of human thinking previously neglected; it starts from the premise that humans don't represent classes of objects as fully disjoint but rather as sets where transitions from membership to non-membership is gradual. The Geographic Information System(GIS) could connect attributes of factor scores derived from factor analysis to digital map by a method so called 'Spatial join'. The results obtained were as follows: Urbanization appearance was concentrated in the large cities, and this appearance was partial extremely, therefore, there has been a structural gap between urban area and agricultural area which was unified into the urban area. All inclinations didn't become worse after sudden urbanization. For example, suburban agriculture was developed as a large scale in the region near the large cities. Then it encouraged farmers in changing their old cultivating methods to the latest ones. But many districts in urban fringe had symptom of urbanization, the districts which were located between large cities have been developed gradually because of urban sprawl, and played a role in connecting each city. Therefore, due to the urbanization, forestry area and agricultural land, well conserved in the agricultural town, could be easily destroyed. In a different way with the urbanization of the Seoul metropolitan region, that of TMR was centralized upon the center of each city, and it was also very partial. But, because so many regions have the potentiality of urbanization, hereafter, the urbanization process in each region is likely to be different multifariously according to the urban management methods.

  • PDF