• Title/Summary/Keyword: Fuzzy Set-Fuzzy Systems

Search Result 667, Processing Time 0.032 seconds

Design of Optimal Digital IIR Filters using the Genetic Algorithm

  • Jang, Jung-Doo;Kang, Seong G.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This paper presents an evolutionary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital fillers as high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of the desired filter transfer function through genetic search fur given filter specifications of minimum filter order. Crossover and mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently from the filter specifications, not from algebraic transformations.

Sparse Data Cleaning using Multiple Imputations

  • Jun, Sung-Hae;Lee, Seung-Joo;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2004
  • Real data as web log file tend to be incomplete. But we have to find useful knowledge from these for optimal decision. In web log data, many useful things which are hyperlink information and web usages of connected users may be found. The size of web data is too huge to use for effective knowledge discovery. To make matters worse, they are very sparse. We overcome this sparse problem using Markov Chain Monte Carlo method as multiple imputations. This missing value imputation changes spare web data to complete. Our study may be a useful tool for discovering knowledge from data set with sparseness. The more sparseness of data in increased, the better performance of MCMC imputation is good. We verified our work by experiments using UCI machine learning repository data.

Protein Named Entity Identification Based on Probabilistic Features Derived from GENIA Corpus and Medical Text on the Web

  • Sumathipala, Sagara;Yamada, Koichi;Unehara, Muneyuki;Suzuki, Izumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.111-120
    • /
    • 2015
  • Protein named entity identification is one of the most essential and fundamental predecessor for extracting information about protein-protein interactions from biomedical literature. In this paper, we explore the use of abstracts of biomedical literature in MEDLINE for protein name identification and present the results of the conducted experiments. We present a robust and effective approach to classify biomedical named entities into protein and non-protein classes, based on a rich set of features: orthographic, keyword, morphological and newly introduced Protein-Score features. Our procedure shows significant performance in the experiments on GENIA corpus using Random Forest, achieving the highest values of precision 92.7%, recall 91.7%, and F-measure 92.2% for protein identification, while reducing the training and testing time significantly.

Operation diagnostic based on PCA for wastewater treatment (PCA를 이용한 하폐수처리시설 운전상태진단)

  • Jeon Byeong-Hui;Park Jang-Hwan;Jeon Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.96-98
    • /
    • 2006
  • 축산폐수는 축사가 대부분 상수원보다 상류지역에 산재하고 있어 이를 효과적으로 관리하기 어려우나, 연속 회분식 반응기(Sequencing Batch Reactor, SBR)는 장치가 간단하고 경제성이 우수하여 축산폐수처리에서 효율적으로 적용될 수 있다. 본 연구에서는 DO(Dissolved Oxygen)과 ORP(Oxidation-Reduction Potential)을 이용하여 지식기반 고장진단 시스템을 제안하였다. 실시간으로 얻어진 ORP, DO값들을 전처리하여, [ORP], [DO]외에 [ORP DO]합성data와 ORP, DO의 특징백터의 합에서 얻어진 fusion data의 총 4개의 data set을 이용하여 각각에 대한 진단과 분류성능을 검토하였다. 이 값을 이용하여 FCM (fuzzy C-mean) 클러스터링 한 후, K-PCA과 LDA로 차원축소시켜 특징백터를 추출하였다. 그리고 Hamming distance로 test data와 특징백터의 거리를 계산하여 각 class를 F1에서 F8까지 분류하였다. 그 결과 데이터를 그대로 이용하는 것 보다 차분데이터형태로 이용하는 것이 우수했으며 그 중 fusion 데이터의 결과가 다른 것들보다 향상된 결과를 보였다. 그리고 K-PCA와 LDA를 결합한 결과가 다른 방법에 비해 우수한 결과를 보였으며 fusion method를 이용한 최고인식율은 98.02%를 나타내었다.

  • PDF

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF

Ordinary Smooth Topological Spaces

  • Lim, Pyung-Ki;Ryoo, Byeong-Guk;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.66-76
    • /
    • 2012
  • In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

A New Approach of Domain Dictionary Generation

  • Xi, Su Mei;Cho, Young-Im;Gao, Qian
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • A Domain Dictionary generation algorithm based on pseudo feedback model is presented in this paper. This algorithm can increase the precision of domain dictionary generation algorithm. The generation of Domain Dictionary is regarded as a domain term retrieval process: Assume that top N strings in the original retrieval result set are relevant to C, append these strings into the dictionary, retrieval again. Iterate the process until a predefined number of domain terms have been generated. Experiments upon corpus show that the precision of pseudo feedback model based algorithm is much higher than existing algorithms.

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.