• Title/Summary/Keyword: Fuzzy Set Theory and Neural Network

Search Result 18, Processing Time 0.023 seconds

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

A Study on Mating Chamferless Parts by Integrating Fuzzy Set Tyeory and Neural Network (퍼지 및 신경회로망을 이용한 면취가 없는 부품의 자동결합작업에 관한 연구)

  • 박용길;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • This paper presents an intelligent robotic control method for chamferless parts mating by integrating fuzzy control and neural network. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly method alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as not only the limitation of the devices performing the assembly but also imperfect knowledge of the parts being assembled. To cope with these problems, an intelligent robotic assembly method is proposed, which is composed of fuzzy controller and learning mechanism based upon neural net. In this method, fuzzy controller copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly scheme so as to learn fuzzy rules from experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly scheme is evaluted through a series of experiments using SCARA robot. The results show that the proposed control method can be effectively applied to chamferless precision parts mating.

A self-learning rule-based assembly algorithm (자기학습 규칙베이스 조립알고리즘)

  • 박용길;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1072-1077
    • /
    • 1992
  • In ths paper a new active assembly algorithm for chamferless precision parts mating, is considered. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly mehtod alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as imperfect knowledge of the parts being assembled as well as the limitation of the devices performing the assebled as well as the limitation of the devices performing the assembly. To cope with these problems, a self-learning rule-based assembly algorithm is proposed by intergaring fuzzy set theory and neural network. In this algortihm, fuzzy set theory copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly schemen so as to learn fuzzy rules form experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly algorithm is evaluated through a series of experiments. The results show that the self-learning fuzzy assembly scheme can be effecitively applied to chamferless precision parts mating.

  • PDF

Inference System Fusing Rough Set Theory and Neuro-Fuzzy Network (Rough Set Theory와 Neuro-Fuzzy Network를 이용한 추론시스템)

  • Jung, Il-Hun;Seo, Jae-Yong;Yon, Jung-Heum;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.49-57
    • /
    • 1999
  • The fusion of fuzzy set theory and neural networks technologies have concentrated on applying neural networks to obtain the optimal rule bases of fuzzy logic system. Unfortunately, this is very hard to achieve due to limited learning capabilities of neural networks. To overcome this difficulty, we propose a new approach in which rough set theory and neuro-fuzzy fusion are combined to obtain the optimal rule base from input/output data. Compared with conventional FNN, the proposed algorithm is considerably more realistic because it reduces overlapped data when construction a rule base. This results are applied to the construction of inference rules for controlling the temperature at specified points in a refrigerator.

  • PDF

Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network (Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측)

  • Heo, Chang-Hwan;Lim, Kee-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

A study on the novel Neuro-fuzzy network for nonlinear modeling (비선형 모델링에 대한 새로운 뉴로-퍼지 네트워크 연구)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.791-793
    • /
    • 2000
  • The fuzzy inference system is a popular computing framework based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantage of fuzzy approach over traditional ones lies on the fact that fuzzy system does not require a detail mathematical description of the system while modeling. As modeling method. the Group Method of Data Handling(GMDH) is introduced by A.G. Ivakhnenko GMDH is an analysis technique for identifying nonlinear relationships between system's inputs and output. We study a Novel Neuro-Fuzzy Network (NNFN) in this paper. NNFN is a network resulting from the combination of a fuzzy inference system and polynomial neural network(PNN) (7) which is advanced structure of GMDH. Simulation involve a series of synthetic as well as experimental data used across various neurofuzzy systems.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF