• Title/Summary/Keyword: Fuzzy Sensor

Search Result 533, Processing Time 0.02 seconds

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Vehicle Emergency Lamp Fuzzy Control Systems Using The GPS (GPS를 이용한 자동차 비상등 작동 장치)

  • Kwon, Yunjung;Nam, Sangyep
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.276-281
    • /
    • 2014
  • Necessities of a traffic means work a car in the modern society human to an usability of a life is enjoying. On the other hand, the damage by traffic accident increment the human quotient worked as we were in proportion to the vehicle which increased. Passing an examination moves necessarily on an obstacle to suddenly appear at the fronts if a car travels and the vehicles which stopped suddenly. Dynamic passing an examination about an obstacle turn on Vehicle Emergency Lamp to by hand when is unhurried, and can turn off, but to appear urgently dynamic passing an examination in time human is instinctive, but cannot inform an emergency to a back vehicle, and a rear-end collision occurs. A car we synthesize a speed of a vehicle, and this unit analyzes as we use GPS, and to drive runs Vehicle Emergency Lamp to automatic in the situations that shall turn on emergencies etc. If a speed of a vehicle continuously slows down in too high-speed driving or low-speed driving, or we are stopped, Vehicle Emergency Lamp is always turned on. It was built if we rise again as clearing itself from risk, and a speed of a vehicle judges, and we turn off Vehicle Emergency Lamp to automatic. It runs till rear-end collision sensor operates, and by hand reset does Vehicle Emergency Lamp a driving vehicle collides from behind to a back vehicle or when a driving vehicle was overthrown. It is shortened very much to the chain rear-end collision traffic accident that is a traffic accident of large size if we use this unit. And we did authentication through the experiment which a driver was helpful to unnecessary operation and a relaxed safe driving during drivings.

Development of Attack Intention Extractor for Soccer Robot system (축구 로봇의 공격 의도 추출기 설계)

  • 박해리;정진우;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.193-205
    • /
    • 2003
  • There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.