• 제목/요약/키워드: Fuzzy Self-Learning

검색결과 116건 처리시간 0.025초

초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링 (Fuzzy neural network modeling using hyper elliptic gaussian membership functions)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

축교정기를 위한 자동굽힘공정제어기 설계 (Automatically Bending Process control for Shaft Straightening Machine)

  • 김승철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 1998
  • In order to minimize straightness error of deflected shafts, a automatically bending process control system is designed, fabricated, and studied. The multi-step straightening process and the three-point bending process are developed for the geometric adaptive straightness control. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and studied for the three-point bending processes. Selection of a loading point supporting condition are derved form fuzzy inference and fuzzy self-learning method in the multi-step straighternign process. Automatic straightening machine is fabricated by using the develped ideas. Validity of the proposed system si verified through experiments.

  • PDF

핸드오프 호 손실율 가능성 분포에 의한 무선망의 퍼지 신경망 호 수락제어 (Fuzzy Neural Networks-Based Call Admission Control Using Possibility Distribution of Handoff Calls Dropping Rate for Wireless Networks)

  • 이진이
    • 한국항행학회논문지
    • /
    • 제13권6호
    • /
    • pp.901-906
    • /
    • 2009
  • 본 논문에서는 퍼지추론과 신경망 학습을 이용하여 무선망의 핸드오프호 손실율 가능성 분포의 상한계 값을 추정하고, 이를 기반으로 한 호 수락제어를 제안한다. 퍼지규칙의 소속함수는 신경망 오류역전파 알고리즘으로 튜닝하고, 핸드오프호 손실율의 상한계 값은 퍼지집합의 가중치 평균에 기초하여 추정한다. 이 방법은 호 손실율 값을 실제보다 과도하게 큰 값으로 추정하는 것을 방지하고, 추정된 값이 실제값보다 작을 때는 실시간적으로 자기보상을 실시하여 호 수락 제어시 호 손실율을 줄인다. 시뮬레이션을 통하여 제안한 방법에 의한 핸드오프 호 손실율의 상한계 값의 추정성능을 보이고, 이를 이용한 호 수락제어 방법이 핸드오프 호 손실율을 사용자가 원하는 핸드오프 호 손실율 이하로 유지할 수 있음을 보인다.

  • PDF

Fuzzy-Sliding Mode Control of Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.173-176
    • /
    • 1999
  • This paper shows a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a Polishing robot. Using this method, the number of inference rules and the shape of membership functions are determined by the genetic algorithm. The fuzzy outputs of the consequent part are derived by the gradient descent method. Also, it is guaranteed that .the selected solution become the global optimal solution by optimizing the Akaike's information criterion expressing the quality of the inference rules. It is shown by simulations that the method of fuzzy inference by the genetic algorithm provides better learning capability than the trial and error method.

  • PDF

MEMBERSHIP FUNCTION TUNING OF FUZZY NEURAL NETWORKS BY IMMUNE ALGORITHM

  • Kim, Dong-Hwa
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.261-268
    • /
    • 2002
  • This paper represents that auto tunings of membership functions and weights in the fuzzy neural networks are effectively performed by immune algorithm. A number of hybrid methods in fuzzy-neural networks are considered in the context of tuning of learning method, a general view is provided that they are the special cases of either the membership functions or the gain modification in the neural networks by genetic algorithms. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also, it can provide optimal solution. Simulation results reveal that immune algorithms are effective approaches to search for optimal or near optimal fuzzy rules and weights.

FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘 (The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN)

  • 박병준;오성권;김현기
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

예측 신경망을 이용한 적응 퍼지 논리 제어 (Adaptive Fuzzy Logic Control Using a Predictive Neural Network)

  • 정성훈
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.46-50
    • /
    • 1997
  • 퍼지논리 제어에서 정적인 퍼지규칙은 플랜트나 환경 파라메터의 중대한 변화에 대처할 수 없다. 이러한 문제를 해결하기 위하여 지금까지 스스로 조직화하는 퍼지제어 및 신경망에 기초한 뉴로퍼지등의 기법이 도입되었다.그러나 이러한 기존 방법들은 동적으로 변화된 퍼지 규칙이 완전하지 않거나 모순될 수 있음으로 해서 퍼지 제어기를 위험한 상황에 처하게 할수도 있다. 본 논문에서는 예측 신경망을 사용하여 새로운 적응퍼지 제어기법을 제안한다.제안된 퍼지제어기는 비록 제어 플랜트나 환경 파라메터가 변화할지라도 초기의 완전하고 모순되지 않은 퍼지 규칙과 계속해서 학습하는 예측 신경망의 예측에러를 이용하여 제어출력을 안전하게 적응적으로 변화시켜간다. 직류 서보모터의 위치제어문제를 이용하여 실험해본 결과 제안한 방법이 적응면에서 매우 유용함을 보였다.

  • PDF

입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계 (A new Design of Granular-oriented Self-organizing Polynomial Neural Networks)

  • 오성권;박호성
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계 (CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills)

  • 박철재
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.