• Title/Summary/Keyword: Fuzzy Self-Learning

Search Result 116, Processing Time 0.027 seconds

Fuzzy Learning Control for Ball & Beam System (볼과 빔 시스템의 퍼지 학습 제어)

  • Joo, Hae-Ho;Jung, Byung-Mook;Lee, Jae-Won;Lee, Hwa-Jo;Lee, Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.439-443
    • /
    • 1996
  • A fuzzy teaming controller is experimentally designed to control the ball k beam system in this paper. Although most fuzzy controllers have been built just to emulate human decision-making behavior, it is necessary to construct the rule bases by using a learning method with self-improvement when it is difficult or impossible to get them only by expert's experience. The algorithm introduces a reference model to generate a desired output and minimizes a performance index function based on the error and error-rate using the gradient-decent method. In our balancing experiment of the ball & beam system, this paper shows that the fuzzy control rules by learning are superior to the expert's experience.

  • PDF

Fuzzy iterative learning controller for dynamic plants (퍼지 반복 학습제어기를 이용한 동적 플랜트 제어)

  • 유학모;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.499-502
    • /
    • 1996
  • In this paper, we propose a fuzzy iterative learning controller(FILC). It can control fully unknown dynamic plants through iterative learning. To design learning controllers based on the steepest descent method, it is one of the difficult problems to identify the change of plant output with respect to the change of control input(.part.e/.part.u). To solve this problem, we propose a method as follows: first, calculate .part.e/.part.u using a similarity measure and information in consecutive time steps, then adjust the fuzzy logic controller(FLC) using the sign of .part.e/.part..u. As learning process is iterated, the value of .part.e/.part.u is reinforced. Proposed FILC has the simple architecture compared with previous other controllers. Computer simulations for an inverted pendulum system were conducted to verify the performance of the proposed FILC.

  • PDF

Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives (센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Han, Hoo-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network (자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어)

  • 오석영;변두균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators (로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.

Self-Organizing Fuzzy Control of a Flexible Joint Manipulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • Park, J.H.;Lee, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.92-98
    • /
    • 1995
  • The position control of flexible joint manipulator is investigated by applying the self-organizing fuzzy logic controller (SOC) proposed by Procyk and Mamdani. The SOC is a heuristic rule-based controller and a further extension of an ordinary fuzzy controller, which has a hierachy structrue which consists of an algorithm being identical to a fuzzy controller at the lower ollp and a learning algorithm accomodating the performance evalution and rule modification function at the upper ollp. This form of control can be used in those complex systems which have been too difficult to control or which in the past have had to rely on the experience of a human operator. Even though the significant dynamic coupling of the motors and links on the flexible joint manipulator, the performance of command-following is good by applying the proposed SOC.

  • PDF

A Study on the Fuzzy Learning Control of the Acrobatic Robot (곡예 로보트의 퍼지학습제어에 관한 연구)

  • 김도현;오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2567-2576
    • /
    • 1994
  • In this paper we propose a new method to determine the learning rates of fuzzy learning algorithm(FLA) in nonlinear MIMO system. The state feedback gains are used from the linearized system of the nonlinear MIMO system. Through this method, it is easy to determine the learing rates. And it is quarauteed the good convergence and confirmed the performance of FLA is better than that of linear controller(LC) through the simulation. Acrobatic robot system is selected as an example(one-input two-output system), and FLA is implemented through the experiment.

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Self-Directed Learning Assessment System Using Fuzzy Logic (퍼지 논리를 이용한 자기 주도적 학습 및 평가 시스템)

  • Woo, Young-Woon;Kim, Kwang-Baek;Lee, Jong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.815-825
    • /
    • 2007
  • The existing web-based self-directed learning systems are in short for the ability of learning skills assessment. Even worse, hey only give test scores as an indicate for test skills, which is also not a good measure for learning skills assessment and makes it difficult to assess learning skills objectively and to present clear assessment criterion. In this paper, we proposed an improved self-directed learning system using fuzzy logic, which can be controlled by learners themselves and helps to evaluate their on learning process. We also implemented the system on the written examination of Engineer Information Processing. The purposed system lust calculates membership functions of learning tine, learning frequency, testing time, and test score. Using them the final membership functions of learning and test skills are calculated and presented in a graphical, i.e. mon understandable, way to user. The purposed system helps learners to assess their achievement and to plan future schedule, and the survey result on the students used the system also supports that.

Comparisons of Some Reinforcement Self-Learning Controllers by Cell-to-Cell Mapping

  • Pong, Chi-Fong;Chen, Yung-Yaw;Kuo, Te-Son
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1029-1032
    • /
    • 1993
  • The construction of the rulebase of a fuzzy controller is usually difficult because experts' knowledge is often hard to derive. To remedy such a problem, a number of self-learning schemes for rulebase formulations were proposed. One of the popular approaches is the reinforcement learning. Many successful examples employing such an idea were proposed and claimed to be with good results in the literature. The purpose of this paper is to discuss and make comparisons between some of the related work in order to provide a better picture regarding their performances. A numerical algorithm for the analysis of nonlinear as well as fuzzy dynamic systems, the Cell-to-Cell Mapping, is used. The analytical results reveals the true behavior of the learning schemes.

  • PDF