• Title/Summary/Keyword: Fuzzy Rules Based

Search Result 643, Processing Time 0.027 seconds

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor (퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어)

  • Hwang, G.H.;Kim, H.S.;Park, J.H.;Hwang, C.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations (가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론)

  • Lee, Moo-Eun;Lee, Dong-Eun;Cho, Sang-Yeop
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Learning and inference of fuzzy inference system with fuzzy neural network (퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론)

  • 장대식;최형일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

Automatically Constructed Fuzzy Rule-Based Pattern Classification Systems for Fault Diagnosis (자동 구축 퍼지 규칙기반 패턴 인식 시스템에 의한 고장진단 시스템의 구현)

  • Hong, Yoon-Kwang;Cho, Seong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.956-958
    • /
    • 1995
  • This paper presents the automatic construction of fuzzy rule-based systems for diagnosing the faults of complex systems. Generally, fuzzy systems work well when we can use expert's experience to articulate fuzzy IF-THEN rules and memberships for fuzzy sets. When we cannot do this, we should generate the fuzzy rules and membership functions for fuzzy sets directly from experimental data. In this paper, we propose a new method on how to extract fuzzy sets and fuzzy rules. We also introduce an efficient fine-tunning algorithm of the parameters of membership functions.

  • PDF

Fuzzy Rules Optimizing by Neural Network-based Adaptive Fuzzy Control

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.2-96
    • /
    • 2001
  • This paper presents a control method for the experimental mobile vehicle. By merging the advantages of neural network, adaptive and fuzzy control, neural network-based adaptive fuzzy control is proposed. It can deal with a large amount of training data by neural network, from these data producing more accurate fuzzy rules by adaptive control, and then controlling the object by fuzzy control. This is not the simple combination of the three methods, but merging them into one control system Experiments and some future considerations are given.

  • PDF

Generating Fuzzy Rules by Hybrid Method and Its Application to Classification Problems (혼합 방법에 의한 퍼지 규칙 생성과 식별 문제에 응용)

  • Lee, Mal-Rey;Lee, Jae-Pil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1289-1296
    • /
    • 1997
  • To build up a knowledge-based system in an Artifical Inerligence System, selecting an appropriate set of rules is one of the key provlems. In this paper, we discuss a new method for exteacting fuzzy rules diredtly from fuzzy membdrchip function dat for pattern classifcation. The fuzzy rules with variable fuzzy recions are defined by sharing fuzzy space in fuzzy grid.Tehse rules are extracted form memberchop function. Them, optimal input vari-ables for the rules are determined using the number of extracted rules as a criterion. The method is compared with neural networks using Ishibuchi. Finally, in order to demonstrate the cffectiveness of the present method, simulation results are shown.

  • PDF