• 제목/요약/키워드: Fuzzy Partition Matrix

검색결과 20건 처리시간 0.032초

퍼지 클러스터링을 이용한 확률분포함수 기반의 다중문턱값 선정법 (Selection Method of Multiple Threshold Based on Probability Distribution function Using Fuzzy Clustering)

  • 김경범;정성종
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.48-57
    • /
    • 1999
  • Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.

  • PDF

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • 융합신호처리학회논문지
    • /
    • 제14권3호
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류 (Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.44-57
    • /
    • 1995
  • 본논문에서는 GFI(Generalized Fuzzy Isodata)와 FI(Fuzzy Isodata) 알고리즘에 관한 이론을 고찰하고 이를 타이어 접지면 패턴 분류에 적용해 보았다. GFI 알고리즘은 FI 알고리즘의 일반화된 형태로서 분할된 군집에 대해서도 퍼지 분할 행렬(fuzzy partition matrix)을 고려해 다시 군집화(clustering)를 가능하게 하는 알고리즘이다. GFI 알고리즘을 사용하여 이진 트리를 구성함에 있어서 각 노드에서의 분할 여부, 즉 군잡화의 타당성(clustering validity) 점검 및 최종적인 이진 트리의 완성은 FDH(Fuzzy Divisve Hierarchical) 군집화알고리즘을 통해 이루어진다. 타이어 접지면에 대한 표준 특징량을 선정하거나 패턴 분류를 수행함에 있어서 이들 알고리즘은모두 우수한 성능을 가짐을 알 수 있었다. 패턴의 특징량으로는 전처리된 타이어 접지면 영상에 나타나는 윤곽선(edge)의 각도 성분을 선정하였으며 이렇게 선정된 특징량은 패턴의 특징을 잘 표현해 주는 유용한 정보를 가진 것으로 생각된다.

  • PDF

Blind linear/nonlinear equalization for heavy noise-corrupted channels

  • Han, Soo- Whan;Park, Sung-Dae
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.383-391
    • /
    • 2009
  • In this paper, blind equalization using a modified Fuzzy C-Means algorithm with Gaussian Weights (MFCM_GW) is attempted to the heavy noise-corrupted channels. The proposed algorithm can deal with both of linear and nonlinear channels, because it searches for the optimal channel output states of a channel instead of estimating the channel parameters in a direct manner. In contrast to the common Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in its search procedure. The selected channel states by MFCM_GW are always close to the optimal set of a channel even the additive white Gaussian noise (AWGN) is heavily corrupted in it. Simulation studies demonstrate that the performance of the proposed method is relatively superior to existing genetic algorithm (GA) and conventional FCM based methods in terms of accuracy and speed.

Fuzzy modeling using transformed input space partitioning

  • You, Je-Young;Lee, Sang-Chul;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.494-498
    • /
    • 1996
  • Three fuzzy input space partitoining methods, which are grid, tree, and scatter method, are mainly used until now. These partition methods represent good performance in the modeling of the linear system and nonlinear system with independent modeling variables. But in the case of the nonlinear system with the coupled modeling variables, there should be many fuzzy rules for acquiring the exact fuzzy model. In this paper, it shows that the fuzzy model is acquired using transformed modeling vector by linear transformation of the modeling vector.

  • PDF

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

분산 분할 방식의 퍼지 규칙 생성 및 추론 시스템 (Fuzzy Rules Generation and Inference System of Scatter Partition Method)

  • 박건준;장태수;김성훈;김용갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.35-36
    • /
    • 2012
  • 퍼지 모델링을 하기 위해서는 퍼지 규칙의 생성이 필연적이며, 일반적으로 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 시스템 데이터를 이용하여 입력 공간을 분산 형태로 분할하는 FCM 클러스터링 알고리즘을 기반으로 하여 퍼지 규칙을 생성하고 추론하는 시스템을 소개한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정되며 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현된다. 제안된 모델은 수치 데이터를 이용하여 평가한다.

  • PDF

자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구 (Stabilization of Power System using Self Tuning Fuzzy controller)

  • 정형환;정동일;주석민
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.58-69
    • /
    • 1995
  • 본 논문에서는 자기조정 퍼지제어기의 한 설계기법을 제안하고, 이를 전력계통 안정화에 적용하였다. 제안된 퍼지제어기의 파라미터는 최급강하법에 의하여 멤버쉽 함수의 중심치와 폭이 최적인 값으로 자지고정 되어진다. 이를 전력계통에 적용한 결과 제안된 제어기법이 종래의 제어기법보다 응답특성이 우수함을 보였다.

  • PDF

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.