• Title/Summary/Keyword: Fuzzy PID cotroller

Search Result 2, Processing Time 0.02 seconds

Active Vibration Control of a Cantilever Beam Using Fuzzy Control Scheme and PID Controller (퍼지 기법과 PID 제어기를 이용한 외팔보의 능동 진동 제어)

  • 최수영;김진태;박기헌
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper is concerned with the fuzzy control scheme and PID controller for the vibration suppression control of a cantilever beam equipped with a laser sensor and an electromagnetic actuator. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriate PID gains in nonlinear systems and systems with time variant characteristic and so on. In this paper, we design the fuzzy based PID controller of which output gains are adjusted automatically and the designed controller is applied to active vibration control of a cantilever beam using electromagnetic actuator with strong nonlinearity. The tuning PID parameters of proposed controller are determined by using Fuzzy algorithm. Effectiveness and performance of the designed controller are verified by both simulation and experiment results. Experimental results demonstrate that better control performance can be achieved in comparison with the PID cotroller.

Design of Levitation Controller with Optimal Fuzzy PID Controller for Magnetic Levitation System (최적 퍼지PID제어기를 이용한 자기부상시스템의 부상제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2014
  • This paper proposes a optimum design method for the Fuzzy PID controller of magnetic levitation-based Rail-Guided Vehicle(RGV). Since an attraction type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the methods designed by conventional controllers. In the paper, the Fuzzy PID controller with fixed parameters are applied and then the optimum parameters of fuzzy PID controller are selected by genetic algorithm. For the fitness function of genetic algorithm, the performance index of PID controller is used. To verify the performance of the proposed method, we used Matlab/simulink model of Maglev and compared the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.