• Title/Summary/Keyword: Fuzzy PID control

Search Result 432, Processing Time 0.028 seconds

Automated Drug Infusion System Based on Fuzzy PID Control during Acute Hypotension

  • Kashihara, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.186-189
    • /
    • 2005
  • In a clinical setting, developing a reliable method for the automated drug infusion system would improve a drug therapy under the unexpected and acute changes of hemodynamics. The conventional proportional-integral-derivative (PID) controller might not be able to achieve maximum performance because of the unexpected change of the intra- and inter-patient variability. The fuzzy PID control and the conventional PID control were tested under the unexpected response of mean arterial blood pressure (MAP) to a vasopressor agent during acute hypotension. Compared with the conventional PID control, the fuzzy PID control performed the robust MAP regulation regardless of the unexpected MAP response (average absolute value of the error between target value and actual MAP: 0.98 vs. 2.93 mmHg in twice response of the expected MAP and 2.59 vs. 9.75 mmHg in three-times response of the expected MAP). The result was due to the adaptive change of the proportional gain in PID parameters.

  • PDF

A novel self-organizing fuzzy plus PID type controller with application to inverted pendulum control (PID와 자동 학습 퍼지 제어기를 이용한 도립 전자의 제어)

  • 이용노;김태원;서일홍;김기엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.681-686
    • /
    • 1991
  • In this paper, a novel self-organizing fuzzy plus PID control algorithm is proposed and analyzed by extensive computer simulations and experiments with an inverted pendulum. Specifically, the proposed self-organizing fuzzy controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the 'then' part of the fuzzy rules and to decide how much fuzzy rules are to be modified after evaluating the control performance, respecfively. And the fuzzy controller is replaced by a PID controller in a prespecified region near by the set point for good settling actions.

  • PDF

Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Lee, Gong-Hee;Im, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Intelligent Control of a Induction Motor Using a Fuzzy Set (퍼지 논리를 이용한 유도 전동기의 지능제어)

  • Kim, Dong-Hwa;Park, Jin-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2129-2131
    • /
    • 2001
  • Induction motor has been using for industrial field. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the fuzzy control for optimal control of the induction motor in plant. In order to attain optimal control, flux, torque and speed controller has been used and an fuzzy logic based controller has been applied to this system. The results of the fuzzy are compared with the PID controller tuned by the Ziegler-Nickels method, through various simulation based on the various disturbance and step response. The simulation results of the fuzzy control represent a more satisfactory response than those of the conventional controllers.

  • PDF

Constant Estimated Terminal Pressure Control Using PID and Fuzzy Control in the Booster Pump System (Booster Pump System에서의 PID 및 Fuzzy 제어를 이용한 일정 예측 최종 압력 제어)

  • 이병훈;이재춘;전덕구;이상균;황민규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.119-122
    • /
    • 1996
  • 본 논문은 Building, 아파트, 병원 호텔 등의 건물의 급수 System으로서 최근 대두되고 있는 Bosster Pump System에 관한 것으로서, 제품의 주요 특징 및 제어 알고리즘을 소개하고 특히 최종 User에게 쾌적한 급수 환경을 제공하기 위한 주 제어 기능인 일정 예측 최종 압력 제어를 PID 및 Fuzzy 제어이론을 이용하여 구현하였는데, 그 적용 알고리즘을 소개하고, 실제 제어 실험을 통해 PID제어와 Fuzzy 제어를 비교하였다.

  • PDF

Simulation for Intelligent Cruise Control of vehicle using Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 차량의 정속주행 시뮬레이션)

  • 임영도;김승철;박재형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.603-610
    • /
    • 1998
  • The purpose of this paper is to describe how the characteristics of the movement of cars can be modeled with computers. For this, we use Matlab and simulate the characteristics of the cruise-speed at which the car is driven using the Fuzzy PID controller. The model of the car is designed by M-S(Matlab-Simulink) and each parameter of PID is estimated automatically by the Fuzzy controller. The simulation of the car is carried out on straight base tracks, and then this is compared and analyzed with the simple Fuzzy controller and the simple PID controller.

  • PDF

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Fuzzy Control of Data Link Antenna Control System for Moving Vehicles

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.525-528
    • /
    • 2005
  • The tracking antenna system must be always pointed to target moving vehicle. Especially, for an antenna mounted on a movable vehicle, it needs the stabilized antenna system. In this paper, two types of fuzzy controller were derived and applied to a data link antenna system and the altitude control of unmanned helicopter, respectively. A simplified Fuzzy-PID controller was designed for 2-axes antenna stabilization and tracking system and the performance was verified by simulations and experiments. Computer simulations were performed by Matlab and SIMULINK. A 2-Axes antenna (SeaTel 1898 model) was selected as test platform of this research. The antenna was modified by using two Blushless Direct Current motors and an embedded DSP controller. To verify the performance of designed antenna servo control system, the performance of the conventional PID controller and that of the Fuzzy-PID controller, designed by the same PID control gains, were compared.

  • PDF

Speed Control of Marine Gas Turbine Engines Using a RCGA and Fuzzy Technique (RCGA와 퍼지기법을 이용한 선박용 가스터빈 엔진의 속도제어)

  • So, Myung-Ok;Lee, Yun-Hyung;Jin, Gang-Gyoo;Jung, Byung-Gun;Kang, In-Chul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.274-280
    • /
    • 2005
  • The system parameters of gas turbine engine tend to change remarkably in real operating condition. It means that operators have to consider environment and suitably control fuel flow. The conventional PID controller, however, can not guarantee good control performance in the aspect of system parameter change. This paper, therefore, proposes a scheme for integrating PID control and fuzzy technique to obtain the good performance of gas turbine engine speed control on the whole operating range. The effectiveness of the proposed fuzzy PID controller is verified through computer simulation.

  • PDF

Design of fuzzy control system based on PID control scheme (PID 제어방식에 근거한 퍼지 제어 시스템의 설계)

  • 김관준;이철희;남현도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.404-407
    • /
    • 1993
  • In this paper, a new PID fuzzy controller(FC) is presented. The linguistic control rules of PID FC is separated into two parts : one is e-.DELTA.e part, and the other is .DELTA.$^{2}$e - .DELTA.e part. And then two FCs employing these rule base individually are synthesized. The control input to the process is decided by taking weighted mean of the outputs of two FCs. The proposed PID FC improve the transient response of the system and gives better performance than the conventional PI FC.

  • PDF