• Title/Summary/Keyword: Fuzzy PI Controller

Search Result 303, Processing Time 0.029 seconds

Design and Implementation for rubust Fuzzy Digital PI+D Control system (강인한 퍼지 디지털 PI+D 제어 시스템의 설계 및 구현)

  • 권태익;김태언;박윤명;박재형;임영도
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.137-140
    • /
    • 2001
  • In this paper, Fuzzzy Digital PI+D Controller plans for load, noise, plant change, Fuzzy Controller makes use of simple four rule and membership function, and plant used three phase Induction Motor. Characteristic of system compared from experimentation respectively the proposed Control System, Digital PID Control and Digital PI+D Control System.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Speed Control of an Induction Motor

  • Shin, Song-Ho;Jin, Shim-Young;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • In this paper, we implemented the variable fuzzy speed controller of an IM(induction motor) using the fuzzy control algorithms. Specially, we proposed a self-tuning technique of scale factors which could make easily the fuzzy speed controller optimize. Comparing with the conventional PI speed controller, the dynamic performances of a proposed fuzzy controller such as the reaching time, the maximum overshoot and the robustness against load disturbance were substantially improved.

  • PDF

Design of Parallel Type Fuzzy Controller Using Model Reference Plant (플랜트 모델참조를 이용한 병렬형 퍼지제어기 설계)

  • 추연규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.379-383
    • /
    • 2003
  • Parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller, consists of a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller, plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that the controller produces rapid and stable responses and overcomes disturbance by using parallel type fuzzy controller in a DC motor application.

Fuzzy Robust Control with Constant Thrust Force on Load Variation for Linear Pulse Motor (리니어 펄스모터의 부하변동에 따른 일정추력 퍼지 강인제어)

  • Bae Dong-Kwan;Kim Kwang-Heon;Park Hyun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.40-44
    • /
    • 2002
  • In this paper, robust control method using fuzzy PI parameter tuning is proposed to control constant thrust force on load variation. First, a structure and thrust force equations of the LPM are described. Second, an controller with PI parameter-tuning using a fuzzy theory is proposed to achieve high-precision position with constant thrust force of the LPM. Finally, the effectiveness of an fuzzy PI controller is demonstrated by some simulated and experimental results. Accurate tracking response and superior dynamic performance can be obtained due to the powerful on-line Fuzzy PI gain tuning method with regard parametric variations and load thrust force variations.

  • PDF

Implementation of a Fuzzy PI Controller for Speed Control of Induction Motors Using FPGA

  • Arulmozhiyaly, R.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • This paper presents the design and implementation of voltage source inverter type SVPWM based speed control of an induction motor using a fuzzy PI controller. This scheme enables us to adjust the speed of the motor by controlling the frequency and amplitude of the stator voltage; the ratio of the stator voltage to the frequency should be kept constant. A model of the fuzzy control system is implemented in real time with a Xilinx FPGA XC3S 400E. It is introduced to maintain a constant speed to when the load varies.

Fuzzy Gain Scheduling of Velocity PI Controller with Intelligent Learning Algorithm for Reactor Control

  • Kim, Dong-Yun;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.73-78
    • /
    • 1996
  • In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller.

  • PDF

Fuzzy-PI Cascade Control of Drum Level of Boiler in Thermal Power Plan (화력 발전소 드럼수위의 퍼지-PI 캐스케이드 제어)

  • Byun, S.H.;Cho, J.Y.;Kim, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.458-460
    • /
    • 1998
  • The drum level control is initiated by 1-element manual control, and then the control mode is changed to 1-element automatic control mode. Finally, the drum level control is changed to 3-element automatic control mode by the logic based on pre-defined threshold of main steam flow. In terms of plant automation, the automatic 1-element control mode is required from the start-up of boiler. In this paper, the fuzzy controller is adopted for automatic 1-element control of drum level from start-up. It is suggested that the fuzzy controller is used in 1-element control, and the fuzzy-PI cascade controller is used in 3-element control. Finally, the validity of suggested control scheme is shown via simulation.

  • PDF

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

The Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer and a Fuzzy Controller (적분 바이너리 관측기와 퍼지 제어기를 이용한 IPMSM 센서리스 속도제어)

  • Lee, Hyoung;Kang, Hyoung-Seok;Jeong, U-Taek;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.925-926
    • /
    • 2006
  • This paper presents a sensorless speed control of an interior permanent magnet synchronous motor using an adaptive integral binary observer and fuzzy logic controller. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. Also, because the conventional fixed gain PI controller are very sensitive to step change of command speed, parameter variations and load disturbance, the fuzzy logic controller is used to compensate a fixed gain PI controller. Therefore, a gain PI is fixed and the IPMSM is drived at another speed region. The effectiveness of the proposed the adaptive integral observer and the fuzzy logic controller are confirmed by experimental results.

  • PDF

Comparisom of Control Algorithm for Simultaneous Control of DC-DC Converter (DC-DC 컨버터 동시제어의 제어 알고리즘 비교)

  • Park, Hyo-Sik;Han, Woo-Yong;Lee, Gong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper presents the comparison results of control algorithm for the simultaneous control of a multi output converter system that controls, simultaneously and independently, the separate Buck converter and Boost converter with the different specification by one DSP digital controller. As two separate converters are regulated by only one DSP, it is possible to achieve the simple digital control circuit for regulating the multi output DC-DC converter. By setting the software switch state, PI and Fuzzy controller can be applied as a controller for each converter without any change of hardware. Also, it is included the control characteristics comparison between PI and Fuzzy controller. The control characteristics of each PWM DC-DC converter is validated by experimental results.