• Title/Summary/Keyword: Fuzzy Mask Filter

Search Result 11, Processing Time 0.02 seconds

Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 영상 필터)

  • Jang, Dea-Sung;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • 영상처리 기술은 인간의 시각에 기반을 둔 영상정보와 관련된 분야에서 중요한 기반 기술로써 현재 여러 분야에서 연구가 활발하게 진행 중이다. 여러 응용 분야에서 사용되는 영상처리의 세부 기술범위는 영상 변환, 영상 개선, 영상 복원, 영상 압축등과 같이 다양하며, 이런 영상처리 기술의 중요한 연구 목표 중의 하나는 정확한 정보 추출을 위한 영상정보의 개선에 있다. 영상정보의 개선은 영상의 해석과 인식을 위한 기본적인 과제이며, 영상에서 나타날 수 있는 잡음을 제거하는 영상처리 기술이 영상정보 개선의 한 분야라고 할 수 있다. 영상정보 개선을 위한 기존의 필터링 알고리즘은 잡음제거율이 높은 만큼 경계선의 보존이 어렵다는 단점이 있으며, 이를 보완하기 위해 다른 영상처리 알고리즘을 함께 응용하여 처리함으로써 처리시간이 증가되고 원 영상의 중요한 정보를 훼손할 가능성이 존재한다. 따라서 본 논문에서는 기존의 필터링 알고리즘의 문제점을 개선하는 동시에 잡음 제거율을 높일 수 있는 Fuzzy Mask Filter 알고리즘을 제안한다. Fuzzy Mask Filter 알고리즘은 마스크에서 얻은 정보를 Fuzzy Logic에 적용하여 임계값을 구하며, 구해진 임계값을 기준으로 출력영상의 화소값을 결정하는 알고리즘이다. 본 논문에서 제안한 알고리즘의 효율성을 검증하기 위해 Impulse 잡음과 Salt pepper 잡음을 임의로 생성하여 기존의 알고리즘과 비교한 결과, 제안된 방법이 잡음 영상에 존재하는 픽셀 정보를 훼손하지 않고 잡음을 효과적으로 제거한 것을 확인할 수 있었다.

  • PDF

Modified Gaussian Filter based on Fuzzy Membership Function for AWGN Removal in Digital Images

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • Various digital devices were supplied throughout the Fourth Industrial Revolution. Accordingly, the importance of data processing has increased. Data processing significantly affects equipment reliability. Thus, the importance of data processing has increased, and various studies have been conducted on this topic. This study proposes a modified Gaussian filter algorithm based on a fuzzy membership function. The proposed algorithm calculates the Gaussian filter weight considering the standard deviation of the filtering mask and computes an estimate according to the fuzzy membership function. The final output is calculated by adding or subtracting the Gaussian filter output and estimate. To evaluate the proposed algorithm, simulations were conducted using existing additive white Gaussian noise removal algorithms. The proposed algorithm was then analyzed by comparing the peak signal-to-noise ratio and differential image. The simulation results show that the proposed algorithm has superior noise reduction performance and improved performance compared to the existing method.

Color Image Filter using an Enhanced Fuzzy Method (개선된 퍼지 기법을 이용한 컬러 영상 필터)

  • Kim, Kwang Baek;Lee, Byung Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.27-32
    • /
    • 2012
  • In this paper, we propose a fuzzy method that improves the existing problem of the fuzzy filtering algorithm. The proposed fuzzy filtering algorithm separates R, G, and B channels from the color image. Mask information was extracted from separated channels and the brightness of the mean value and median value for channels was applied in the function of the proposed fuzzy method to calculate the membership and achieve application in the inference rule. Also, the membership degrees of R, G, and B were used to distinguish the possibility of noise. The proposed fuzzy method selected three membership functions. If noise is distinguished, the noise is eliminated by selecting the median value or mean value as the relevant pixel value according to the degree of noise. By applying the proposed method in color images, it was verified that the proposed method is more effective in eliminating noise when compared with the conventional fuzzy filtering method.

Color Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 컬러 영상 필터)

  • Jeon, Hyun-Jin;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.305-307
    • /
    • 2009
  • 본 논문에서는 기존의 퍼지 논리를 이용한 필터링 알고리즘의 문제점을 개선하는 동시에 컬러 영상에 적용할 수 있는 퍼지 필터 알고리즘을 제안한다. 제시된 퍼지 필터 알고리즘은 영상의 RGB 컬러 정보를 각각의 R, G, B 채널 영상으로 분리하고, 각 채널 영상에서 마스크가 위치한 기준 픽셀의 잡음 가능성 정도를 퍼지 논리에 적용하여 판단한다. 잡음 정도에 따라서 출력 영상의 화소값을 평균값 또는 중간값으로 결정한다. 제안된 방법을 잡음이 존재하는 칼라 영상에 적용한 결과, 단색 정보를 기준으로 처리하는 기존의 퍼지 필터 방법에 비해서 효과적인 것을 확인하였다.

  • PDF

Noise Removal using Fuzzy Mask Filter (퍼지 마스크 필터를 이용한 잡음 제거)

  • Lee, Sang-Jun;Yoon, Seok-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.41-45
    • /
    • 2010
  • Image processing techniques are fundamental in human vision-based image information processing. There have been widely studied areas such as image transformation, image enhancement, image restoration, and image compression. One of research subgoals in those areas is enhancing image information for the correct information retrieval. As a fundamental task for the image recognition and interpretation, image enhancement includes noise filtering techniques. Conventional filtering algorithms may have high noise removal rate but usually have difficulty in conserving boundary information. As a result, they often use additional image processing algorithms in compensation for the tradeoff of more CPU time and higher possibility of information loss. In this paper, we propose a Fuzzy Mask Filtering algorithm that has high noise removal rate but lesser problems in above-mentioned side-effects. Our algorithm firstly decides a threshold based on fuzzy logic with information from masks. Then it decides the output pixel value by that threshold. In a designed experiment that has random impulse noise and salt pepper noise, the proposed algorithm was more effective in noise removal without information loss.

Color Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 컬러 영상 필터)

  • Ko, Chang-Ryong;Koo, Kyung-Wan;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.43-48
    • /
    • 2011
  • Among various methods proposed earlier, fuzzy image filtering is usually one of the favored techniques because it has less blurring effect and the decrease of noise removal rate after filtering. However, fuzzy filtering is ineffective on color images since it is firstly developed with gray scale. Thus, in this paper, we propose a fuzzy filtering algorithm for color images. First, we divide RGB color information from image into three channels of R, G, and B and judge the possibility of each pixel with mask by fuzzy logic independently. The output pixel value might be the average or median according to the degree of noise. Our experiment successfully verifies the effectiveness of new algorithm in color image.

Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment (복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.645-651
    • /
    • 2021
  • With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.

AWGN Removal Algorithm using Switching Fuzzy Function and Weight (스위칭 퍼지 함수와 가중치를 사용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.121-123
    • /
    • 2021
  • Image processing is being used in various forms in important fields of the 4th industrial revolution, such as artificial intelligence, smart factories, and the IoT industry. In particular, in systems that require data processing such as object tracking, medical images, and object recognition, noise removal is used as a preprocessing step, but the existing algorithm has a drawback in that blurring occurs in the filtering process. Therefore, in this paper, we propose a filter algorithm using switching fuzzy weights. The proposed algorithm switches the fuzzy function by dividing the low-frequency region and the high-frequency region by the standard deviation of the filtering mask, and obtains the final output according to the fuzzy weight. The proposed algorithm showed improved results compared to the existing method, and showed excellent characteristics in the region where the high-frequency component is strong.

  • PDF

Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment (AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.207-213
    • /
    • 2022
  • Recently, with the improvement of the performance of IoT technology and AI, automation and unmanned work are progressing in a wide range of fields, and interest in image processing, which is the basis of automation such as object recognition and object classification, is increasing. Image noise removal is an important process used as a preprocessing step in an image processing system, and various studies have been conducted. However, in most cases, it is difficult to preserve detailed information due to the smoothing effect in high-frequency components such as edges. In this paper, we propose an algorithm to restore damaged images in AWGN(additive white Gaussian noise) using fuzzy weights based on Gaussian distribution. The proposed algorithm switched the filtering process by comparing the filtering mask and the noise estimate with each other, and reconstructed the image by calculating the fuzzy weights according to the low-frequency and high-frequency components of the image.

Noise Removal Algorithm based on Fuzzy Membership Function in AWGN Environments (AWGN 환경에서 퍼지 멤버십 함수에 기반한 잡음 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1625-1631
    • /
    • 2020
  • With the development of IoT technology, various digital equipment is being spread, and accordingly, the importance of data processing is increasing. The importance of data processing is increasing as it greatly affects the reliability of equipment, and various studies are being conducted. In this paper, we propose an algorithm to remove AWGN according to the characteristics of the fuzzy membership function. The proposed algorithm calculates the estimated value according to the correlation between the value of the fuzzy membership function between the input image and the pixel value inside the filtering mask, and obtains the final output by adding or subtracting the output of the spatial weight filter. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and analyzed using difference image and PSNR comparison. The proposed algorithm minimizes the effect of noise, preserves the important characteristics of the image, and shows the performance of efficiently removing noise.