• 제목/요약/키워드: Fuzzy Logic Method

검색결과 1,176건 처리시간 0.02초

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Knowledge Management in an Iranian Health organization: Investigation of Critical Success Factors

  • Hojabri, Roozbeh;Eftekhar, Farrokh;Sharifi, Moslem;Hatamian, Alireza
    • 산경연구논집
    • /
    • 제5권4호
    • /
    • pp.31-42
    • /
    • 2014
  • Purpose - According to the applied studies knowledge, management implementation can improve organizational performance. The main objective of this study is to develop an understanding of critical success factors that enhance the successful implementation of knowledge management. Research design, data, and methodology - This study used Analytical Hierarchy Procedure (AHP), which is a multi-criteria decision making model that works on fuzzy logic. Using this method, researchers can find the proportion of success due to the contribution of the critical success factors (CSFs). Results - The results show that more than 70% of respondents indicate the possibility of success in knowledge management implementation. Further, the results show that top management support has the greatest relationship with the success of knowledge management implementation. This was followed by information technology, performance measurement, and culture, which had a high relation with knowledge management success. Process and activities have a moderate positive relation, while education and training has a low relation with success. Because of an inappropriate p-value, knowledge management strategies show no relation to the success of knowledge management in the Iranian health Industry. Conclusions - This study was conducted because of a critical issue in the Iranian health industry that indicated that a significant portion of the workforce would retire in 5 to 10 years. Most highly experienced and knowledge oriented employees would become eligible for retirement. Therefore, knowledge management is presented as a complete solution in the Iranian health sector.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

스포츠이벤트 매니지먼트 프로세스 개발 및 적합성 평가 (Development of Sports Events Management Process and Conformance Assessment)

  • 김주학;김주용;조선미
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권7호
    • /
    • pp.691-700
    • /
    • 2017
  • 스포츠이벤트는 스포츠 산업의 핵심 상품으로 관련 비즈니스 규모는 꾸준히 증가하고 있다. 그러나 스포츠 이벤트의 관리의 측면에서 스포츠 이벤트를 통해 생성된 지식과 경험은 비효율적이고 비체계적으로 관리되고 있다. 이러한 이유로 스포츠 이벤트의 유치, 준비와 운영 과정에서 불필요한 자원의 낭비와 시행착오가 반복되곤 한다. 이 연구는 스포츠 이벤트 관리 프로세스를 개발하고 적합성을 평가하는 데 그 목적이 있다. 이 연구에서는 스포츠이벤트의 핵심 프로세스를 단계별로 개발한 뒤 설계된 업무 프로세스의 적합성 평가를 위해 유사한 환경의 시범대회를 선정하여 설계 된 프로세스를 적용 및 평가하였다. 적용 평가의 대상 기능영역은 등록, 숙박, 수송, 방송, 식음료의 5개 FA이며 이 중 63개의 액티비티를 선정하여 적합성 분석을 실행하였다. 프로세스 모델링 방법으로는 IDEF(IDEF; Integration Definition)방법을 사용하였다. 적합성 평가는 퍼지이론에 기반한 프로세스 마이닝 기법을 사용하였고, 프로세스 마이닝 도구로는 ProM을 활용하였다.

호감도 함수 기반 다특성 강건설계 최적화 기법 (A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique)

  • 박종필;조재훈;남윤의
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.