• Title/Summary/Keyword: Fuzzy Logic Controller(FLC)

Search Result 225, Processing Time 0.03 seconds

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Maximum Power Point Tracking for Photovoltaic System Using Fuzzy Logic Controller

  • Abo-Khalil A.G.;Lee D.C.;Seok J.K.;Choi J.W.;Kim H.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.503-506
    • /
    • 2003
  • The photovoltaic generators have a nonlinear V-I characteristics and maximum power points which vary with the illumination levels and temperatures. Using maximum power point tracker with the intermediate converter can increase the system efficiency by matching the PV systems to the load. A novel MPPT control for photovoltaic system is proposed. The system input parameters are (dP, dI, and last incremental of duty ratio $L\deltaD$)and the output is the new incremental value (new ${\deltaD}$) according to the maximum power point under various illumination levels. Using fuzzy logic controller allows extracting the maximum power rapidly and without significant oscillations. Also FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve control system.

  • PDF

Truck Backer-Upper Control using Fuzzy-Sliding Control (피지 슬라이딩 제어를 이용한 트럭 역주행 제어)

  • Song, Young-Mok;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2476-2478
    • /
    • 2000
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems: It is some difficult to design the stable FLC for a beginner. Because FLC depends mainly on individual experience. Sliding control is a powerful robust method to control nonlinearities and uncertain parameters systems. But it has a chattering problem by discontinuous control input according to sliding surface. Therfore it needs to be smoothed to achieve an optimal input. In this paper, To solve problems desinged Fuzzy Sliding Control. The effictiveness of result is shown by the simulation and the experimental test for Truck Backer-Upper Control.

  • PDF

Design of Improved Neuro-Fuzzy Controller for the Development of Fast Response and Stability of DC Servo Motor (직류 서보 전동기의 속응성 및 안정성 향상을 위한 개선된 뉴로-퍼지 제어기의 설계)

  • Kang, Young-Ho;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.252-257
    • /
    • 2002
  • We designed a neuro-fuzzy controller to improve some problems that are happened when the DC servo motor is controlled by a PID controller or a fuzzy logic controller. Our model proposed in this paper has the stable and accurate responses, and shortened settling time. To prove the capability of the neuro-fuzzy controller designed in this paper, the proposed controller is applied to the speed control of DC servo motor. The results showed that the proposed controller did not produce the overshoot, which happens when PID controller is used, and also it did not produce the steady state error when FLC is used. And also, it reduced the settling time about 10%. In addition, we could by aware that our model was only about 60% of the value of current peak of PID controller.

The Optimiazation of Knowledgebase for Swimming Pool Temperature Control Systems using Genetic Algorithms (Genetic 알고리즘을 이용한 풀 온도 제어 시스템의 지식베이스 최적화)

  • Kim, Seong-Hak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.319-326
    • /
    • 1994
  • Automatic control has been for the most part applied to linear systems where ti can be approximately formalized. In case that it is not definitely established the mathematical modelling to control objects, it requires manual control strategies which put under the human rule. In this paper, it constructs an FLC (Fuzzy Logic Controller) in order to turn a hand control into an automatic control in the domain of swimming pool that has been almost absolutely dependant on a skilled worker's experience. Genetic algorithms upgrade the knowledge which is acquired from human expert, using by FLC, so as to maintain knowledge in the very optimal way. It also designs an algorithm that modifies the rule base and the membership function at the same time, and ultimately will show that it can get better result than human controllers.

  • PDF

An Optimal Traffic Signal system of Cross-roads Applying Fuzzy Control (퍼지 제어를 적용한 교차로에서의 최적 교통 신호 시스템)

  • Lee, Yeong-Sin;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.167-176
    • /
    • 1997
  • Due to continuous change in traffic and increase in traffic volumes at the intersection, efficient traffic control system is required to manage road situations flexibly in accordance with the change occurring every hour. In this paper, we study the control systems which will help us to determine the interva ls of intersection following the autonomous analysis of complexity of the road. Fuzzy logic control concept was applied to the fuzzy logic controller(FLC) for controlling traffic signal. Furthermore the fuzzy signal systems were compare with the regular signal systems to prove higher performance of the FLC presente d in the paper. By means of simulation, the validity of FLC was proven. About 6% increase in the efficiency of traffic control based on the proposed algorithm in this paper was when we use the simulation.

  • PDF

The Constant Angle Excavation Control of Excavator's Attachment using Fuzzy Logic Controller (퍼지 제어기를 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • Seo, Sam-Joon;Park, Gwi-Tae;Shin, Dong-Mok;Kim, Kwan-Soo;Yim, Jong-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1079-1082
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a fuzzy logic controller(FLC) which controls the position of excavator's attachment. This approach enables the transfer of human heuristics and expert knowledge to the controller. Excavation experiments are carried out to check the performance of the FLC.

  • PDF

The Wide-Range Speed Control of Induction Motor using Fuzzy Reasoning (퍼지 추론을 이용한 유도 전동기의 광대역 속도 제어)

  • 최홍규;강태은;송영주;김병철;전광호
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.69-76
    • /
    • 2003
  • In this paper, a novel speed control system that implements the fuzzy logic controller(FLC) is proposed. Fuzzy controller is shown more excellent efficency than a conventional controllers in the strength aspect and non-linear controller using IF-THEN rule which can control without process the accurate mathematical modeling about induction motor. But we cannot expect that conventional fuzzy controller divide equally the space of input and output parameter and use the certain shape of triangle membership function. Therefore to develop the efficiency of conventional fuzzy controller, We need to scale the range of membership functions. In this study, proposed fuzzy controller has the ability controlling scale of membership functions using by output scaling factor.

  • PDF

3-Dimensional FUZZY-PID Controller for Robust Fine Control of Nonlinear System (비선형(非線形) 시스템의 강인(强靭)한 미세제어(微細制御)를 위한 3-D FUZZY-PID 제어기(制御器)의 설계(設計))

  • Lee, Joo-Hoon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.404-407
    • /
    • 1992
  • In this thesis, the algorithm of Fuzzy Logic Control(FLC) is applied to the Nonlinear system to implement a system response. Proportional-Integral-Derivative(PID) controller is also used to control the various systems. Look-up table is applied to decide the control input, and the other look-up table is added for saving memories and inference time. Generally, FLC input variables are error(E) and error derivative($\Delta$E). In this algorithm. another Input variable error's second derivative($\Delta^2$E) is added for Robust Fine control.

  • PDF

Enhanced Hybrid Multi Electrical Cupping System using S-PI Controller (S-PI 제어기를 이용한 개선된 하이브리드 멀티전동부항시스템)

  • Kim, Jong-Chan;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1400-1407
    • /
    • 2015
  • In the paper, we suggest bettered EHMECS(Enhanced Hybrid Multi Electrical Cupping System) to regulate automatically vacuum pressure using many cupping cup at once. We controlled accurately the pressure using S-PI control technique in pump motor to input the air inside cupping cup. S-PI control compared constant velocity, load and velocity variance between existing PI and FLC(Fuzzy Logic Control). The stabilization time of suggested S-PI control improve 20% of existing PI and 8% of FLC. The error constant of normal condition improved 71% of existing PI and 62% of FLC in steady speed and 80% of existing PI and 67% of FLC in load change. Also the error constant about velocity variance improve 45% of PI control. It is prove the suggested S-PI control technique. When use long time vacuum pressure of cupping cup regulated the suggested S-PI control technique, can loosen knotted muscles.