• Title/Summary/Keyword: Fuzzy Logic Control(FLC)

Search Result 236, Processing Time 0.018 seconds

Voltage Controlled Speed Controller of BLDC Motor Using Fuzzy Logic Control (Fuzzy Logic Control를 이용한 BLDC 모터의 전압 제어 속도 제어기)

  • Park, Jun-Ho;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.481-486
    • /
    • 2018
  • DC motors are classified as DC motors with brush structure and BLDC motors without brush structure. Representing the speed control of the BLDC motor is the PI control. The speed control using the PI controller has a disadvantage that the response characteristic to reach the steady state is slow. Therefore in this paper, a voltage controlled speed controller using a Fuzzy Logic Controller (FLC), which has a short steady response time and usefulness of nonlinear control. The validity and usefulness of the proposed fuzzy speed controller are verified by simulation through Simulink of MATLAB program. Experiments were performed on the PI controller and the proposed fuzzy speed controller in three cases with reference speeds of 500rpm, 800rpm, and 1500rpm. Experimental results show that the proposed fuzzy controller has more 30% improved steady state speed response than PI controller.

An Optimal Traffic Signal system of Cross-roads Applying Fuzzy Control (퍼지 제어를 적용한 교차로에서의 최적 교통 신호 시스템)

  • Lee, Yeong-Sin;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.167-176
    • /
    • 1997
  • Due to continuous change in traffic and increase in traffic volumes at the intersection, efficient traffic control system is required to manage road situations flexibly in accordance with the change occurring every hour. In this paper, we study the control systems which will help us to determine the interva ls of intersection following the autonomous analysis of complexity of the road. Fuzzy logic control concept was applied to the fuzzy logic controller(FLC) for controlling traffic signal. Furthermore the fuzzy signal systems were compare with the regular signal systems to prove higher performance of the FLC presente d in the paper. By means of simulation, the validity of FLC was proven. About 6% increase in the efficiency of traffic control based on the proposed algorithm in this paper was when we use the simulation.

  • PDF

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Control of Hydraulic Excavator Using Self Tuning Fuzzy Sliding Mode Control (자기 동조형 퍼지 슬라이딩 모드 제어를 이용한 유압 굴삭기의 제어)

  • Kim Dongsik;Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, to overcome drawbacks of FLC a self tuning fuzzy sliding mode controller is proposed, which controls the position of excavator's attachment, which can be regarded as an ill-defined system. It is reported that fuzzy logic theory is especially useful in the control of ill-defined system. It is important in the design of a FLC to derive control rules in which the system's dynamic characteristics are taken into account. Control rules are usually established using trial and error methods. However, in the case where the dynamic characteristics vary with operating conditions, as in the operation of excavator attachment, it is difficult to find out control rules in which all the working condition parameters are considered. Experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator. The experimental results show that both alleviation of chattering and performance are achieved. Fuzzy rules are easily obtained by using the proposed method and good performance in the following the desired trajectory is achieved. In summary, the proposed controller is very effective control method for the position control of the excavator's attachment.

Design of FLC based on the concept of VSC for Home VCR Drum Motor

  • Park, Tae-Hong;Lee, Sang-Lak;Park, Gwi-Tae;Lee, Kee-Samg
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • In this paper, the FLVSC (Fuzzy Logic Variable Structure controller), of which control rules are extracted from the concepts of the VSC(Variable Structure control) is proposed and diesgned for drum motor(BLDC motor) in home VCR. The FLC (Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathermatical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of distrubances, parameter variations and uncertainites in a sliding mode. In addition, the method has the properties of the FLC-noise rejection capability etc. The computer simulation and experiment using DSP(TMS320C30) have been carried out for the servo control of VCR drum motor to show the usefulness of the proposed method.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyeon;Kim, Hyeong-Su;Park, Jun-Ho;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

Design and Implementation of a Single Input Fuzzy Logic Controller for Boost Converters

  • Salam, Zainal;Taeed, Fazel;Ayob, Shahrin Md.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.542-550
    • /
    • 2011
  • This paper describes the design and hardware implementation of a Single Input Fuzzy Logic Controller (SIFLC) to regulate the output voltage of a boost power converter. The proposed controller is derived from the signed distance method, which reduces a multi-input conventional Fuzzy Logic Controller (CFLC) to a single input FLC. This allows the rule table to be approximated to a one-dimensional piecewise linear control surface. A MATLAB simulation demonstrated that the performance of a boost converter is identical when subjected to the SIFLC or a CFLC. However, the SIFLC requires nearly an order of magnitude less time to execute its algorithm. Therefore the former can replace the latter with no significant degradation in performance. To validate the feasibility of the SIFLC, a 50W boost converter prototype is built. The SIFLC algorithm is implemented using an Altera FPGA. It was found that the SIFLC with asymmetrical membership functions exhibits an excellent response to load and input reference changes.

Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어)

  • 한성현;김종수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

A Study on Policing Mechanism in ATM Network using Fuzzy Control (퍼지 제어를 이용한 ATM망에서 PM에 관한 연구)

  • 신관철;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.931-940
    • /
    • 2001
  • In this paper, I propose Fuzzy Policing Mechanism(FPM) over ATM networks for the control of traffic which is unpredictable and bursty source. The FPM is consist of counter, subtracter and Fuzzy Logic Controller(FLC). The FLC is divided to fuzzifier, inference engine and defuzzifer The output of FLC inputs to the subtractor and it controls the counter. The counter works as a switch in transmission of cells. In simulation, I compared the FPM with the Leaky Bucket algorithm(LBM) in cell loss probability and performance characteristics. As a result, FPM gives lower cell loss probability than that of LBM and has good response behavior The FPM efficiently controls the transmission of packets which are variable traffic source and, it also has good selectivity.

  • PDF

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.