• Title/Summary/Keyword: Fuzzy Logic Control(FLC)

Search Result 236, Processing Time 0.021 seconds

A Study on Development of Intelligent AC Servo Control Drive (지능형 AC 서보 제어드라이브의 개발에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2132-2134
    • /
    • 2001
  • We propose an Tabu search changing neighborhood solution's range to be searched each iteration according to an objective function. It is applied for designing the scaling factors of Fuzzy Logic Controller (FLC) using the proposed Tabu search. We apply it to the speed control of AC Servomotor to evaluate the usefulness of the proposed method. As a result of the computer simulation, the FLC shows the better performance than PI controller in terms of overshoot and settling time.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Design of Improved Neuro-Fuzzy Controller for the Development of Fast Response and Stability of DC Servo Motor (직류 서보 전동기의 속응성 및 안정성 향상을 위한 개선된 뉴로-퍼지 제어기의 설계)

  • Kang, Young-Ho;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.252-257
    • /
    • 2002
  • We designed a neuro-fuzzy controller to improve some problems that are happened when the DC servo motor is controlled by a PID controller or a fuzzy logic controller. Our model proposed in this paper has the stable and accurate responses, and shortened settling time. To prove the capability of the neuro-fuzzy controller designed in this paper, the proposed controller is applied to the speed control of DC servo motor. The results showed that the proposed controller did not produce the overshoot, which happens when PID controller is used, and also it did not produce the steady state error when FLC is used. And also, it reduced the settling time about 10%. In addition, we could by aware that our model was only about 60% of the value of current peak of PID controller.

Intelligent Path Planning and Following for Coordinated Control of Heterogeneous Marine Robots (이종 해양로봇의 협력제어를 위한 지능형 경로 계획 및 추종)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.831-836
    • /
    • 2010
  • In real system application, the path planning and following system for the coordinated control of heterogeneous marine robots based on the underwater acoustic communication has the following problems: surface and underwater robots have different maneuvering properties, an underwater robot requires more effective operating, it has a limited communication range because of the transmission loss (TL) of acoustic wave, it has a communication error because of the Doppler distortion of acoustic wave, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent path planning algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC) based on system modeling, is proposed. To verify the performance of the proposed algorithm, the path planning and following of an underwater robot is performed according to the maneuvering of a surface robot. Simulation results show that the proposed algorithm effectively solves the problems.

A study on improvement of the control performance of the automatic voltage regulator of a brushless synchronous generator (브러쉬리스 동기발전기 자동전압조정기의 제어성능 향상을 위한 연구)

  • Lee, Youngchan;Kim, Jongsu;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.909-915
    • /
    • 2014
  • Terminal voltage of the Automatic Voltage Regulator(AVR) of brushless synchronous generator is generally being controlled by PID Control way in shore and ship field. However, in case of changeable large load on power system, PID control method is deficiency to respond output voltage with settling time. Hence, taking into consideration this situation, it is required new control method. In this thesis, we propose Fuzzy Logic Control(FLC) which has more optimal robust control way in order to respond varying values of terminal voltage to the brushless synchronous generator through simulation of MATLAB/SIMULINK and prove Fuzzy logic control more optimal compared with PID control.

General Digital Fuzzy Logic Controller Design For Resonant Inverter (공진형 인버터를 위한 범용 퍼지 논리 제어기 설계)

  • 김태언;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • Induction heating system is time varying system around curie point. So, it has many troubles which are system shut down and change the load impedance. In this paper has been designed the parallel resonant inverter which controlling the constant power and tracking the load resonant frequency with PLL is possible, in order to minimize switching losses and solve it's many troubles. The current full-bridge type parallel resonant inverter of an induction heating system was composed of IGBT in switching device. For regulating the output power of an induction heating system, the Fuzzy logic controller is used. The Fuzzy controller makes the control signal for a stable power regulating control and when reference is changed, it is superior to adaptability. It has been evaluated a stable behavior for a noise with switching and a load disturbance.

  • PDF

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Fuzzy Logic based MPPT control for the Variable Speed Wind Turbine Energy of the PMSG (PMSG의 가변 풍속 발전시스템을 위한 퍼지제어 기반의 MPPT 제어)

  • Jang, Mi-Geum;Chung, Dong-Hwa;Song, Sung-Geun;Kim, Dae-Kyong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.512-513
    • /
    • 2011
  • 본 논문에서는 PMSG(Permanent Magnet Synchronous Generator)의 가변속-고정피치(Variable-Speed Fixed-Pitch) 풍력발전시스템을 위한 FLC를 기반으로 하는 최대 전력점제어(MPPT) 알고리즘을 제시한다. 최근에는 풍속변화에 대응하여 최대전력을 발생할 수 있는 가변속 풍력발전 시스템에 대한 연구가 활발히 진행 중이다. 국내의 지형적 조건에 따른 바람의 영향으로 풍력발전 시스템의 MPPT제어가 반드시 필요하다. 종래의 풍력발전 MPPT 제어는 응답속도 등에 대한 문제점이 나타난다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 파라미터 변동에 강인한 FLC를 기반으로 하는 최대 전력점 제어(MPPT)를 제시한다. 또한 본 논문에서 제시한 알고리즘은 시뮬레이션 결과를 통해 타당성을 입증한다.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.