• Title/Summary/Keyword: Fuzzy Index

Search Result 328, Processing Time 0.02 seconds

A Study on Optimal Fuzzy Identification by means of Hybrid Identification Algorithm

  • Park, Byoung-Jun;Park, Chun-Seong;Oh, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.215-220
    • /
    • 1998
  • In order to optimize fuzzy model, we use the optimal algorithm with a hybrid type in the identification of premise parameters and standard least square method in the identification of consequence parameters of a fuzzy model. The hybrid optimal identification algorithm is carried out using a genetic algorithm and improved complex method. Also, the performance index with weighting factor is proposed to achieve a balance between the insults of performance for the training and testing data. Several numerical examples are used to evaluate the performance of the proposed model.

  • PDF

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

The application of a fuzzy inference system and analytical hierarchy process based online evaluation framework to the Donghai Bridge Health Monitoring System

  • Dan, Danhui;Sun, Limin;Yang, Zhifang;Xie, Daqi
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.129-144
    • /
    • 2014
  • In this paper, a fuzzy inference system and an analytical hierarchy process-based online evaluation technique is developed to monitor the condition of the 32-km Donghai Bridge in Shanghai. The system has 478 sensors distributed along eight segments selected from the whole bridge. An online evaluation subsystem is realized, which uses raw data and extracted features or indices to give a set of hierarchically organized condition evaluations. The thresholds of each index were set to an initial value obtained from a structure damage and performance evolution analysis of the bridge. After one year of baseline monitoring, the initial threshold system was updated from the collected data. The results show that the techniques described are valid and reliable. The online method fulfills long-term infrastructure health monitoring requirements for the Donghai Bridge.

Application of Fuzzy Control for Power System Stabilization (전력계통의 안정화를 위한 퍼지제어의 적용)

  • Chong, H.H.;Lee, J.T.;Chong, D.I.;Joo, S.M.;Kim, H.J.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.109-111
    • /
    • 1993
  • This paper proposed a regulation technique of scale factors on fuzzy controller for power system stabilization. These scale factors arc regulated by a given exponential function with performance index variables. Simulation results show that the proposed fuzzy control technique are more powerful than conventional ones in faces of usefulness and robustness.

  • PDF

COMPREHENSIVE ASSESSMENT MODEL OF ECOLOGICAL RIPARIAN ZONE

  • Xia, Ji-Hong;Wu, Wei;Yan, Zhong-Min
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2005
  • Comprehensive assessment of ecological riparian zone is to analyze and evaluate the status of riparian zone ecosystem. The existing problem of the ecosystem can be found through the assessment. The AHP-FUZZY method used in the assessment is based on the hierarchy model of index, grade model of object, and attribution degree of index. Accordingly, the four models have been discussed and presented from the aspect of the stability, landscape, eco-health and eco-safety of riparian zone.

  • PDF

A NOTE ON THE MAXIMUM ENTROPY WEIGHTING FUNCTION PROBLEM

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.547-552
    • /
    • 2007
  • In this note, we extends some of the results of Liu [Fuzzy Sets and systems 157 (2006) 869-878]. This extension consists of a simple proof involving weighted functions and their preference index. We also give an elementary simple proof of the maximum entropy weighting function problem with a given preference index value without using any advanced theory like variational principles or without using Lagrangian multiplier methods.

A Note on the Minimal Variability Weighting Function Problem

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.991-997
    • /
    • 2006
  • Recently, Liu (2005) proposed a special type of weighting function under a given preference index level with the minimal variability similar to the minimal variability OWA operator weights problem proposed by Fuller and Majlender (2003). He solved this problem using a result of classical optimal control theory. In this note, we give a direct elementary proof of this problem without using any known results.

  • PDF

Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks (다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계)

  • Kim, Hyun-Ki;Lee, Seung-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.

Fuzzy-AHP-Based Technology Evaluation Model for venture firms (Fuzzy-AHP에 기반을 둔 벤처기업의 기술력 평가 모델)

  • Joun, Hyang-Soon;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.363-371
    • /
    • 2016
  • Technology evaluation for technology innovation of venture firms should take the rapidly changing corporate environment, the ambiguity of language used in evaluation, and the inaccuracy of evaluation index into consideration. In this paper, targeting the absorptive capacity and technological entrepreneurship which are typical evaluation factors of venture firms, an ACTEM model to calculate the importance, priority, and dynamic capability of factors, applying Fuzzy-AHP was proposed. The fuzzy theory was introduced to compensate for the ambiguity of cognitive judgments when calculating weighted values for the factors that made up an assessment scale. An assessment criteria framework for absorptive capacity, technological entrepreneurship, and dynamic capability, which were not considered in previous studies on the evaluation and measurement of technological prowess, so that the users could have a realistic alternative to choose. The study compared the ACTEM model with the old AHP assessment method and found that "knowledge acquisition" and "producing ability" were the highest in absorptive capacity and technological entrepreneurship, respectively, thus demonstrating its validity.

Application of a Climate Suitability Model to Assess Spatial Variability in Acreage and Yield of Wheat in Ukraine (우크라이나 밀 재배 면적 및 수량의 공간적 변이 평가를 위한 기후적합도 모델의 활용)

  • Jin Yeong Oh;Shinwoo Hyun;Seungmin Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • It would be advantageous to predict acreage and yield of crops in major grain-exporting countries, which would improve decisions on policy making and grain trade in Korea. A climate suitability model can be used to assess crop acreage and yield in a region where the availability of observation data is limited for the use of process-based crop models. The objective of this study was to determine the climate suitability index of wheat by province in Ukraine, which would allow for the spatial assessment of acreage and yield for the given crop. In the present study, the official data of wheat acreage and yield were collected from the State Statistics Service of Ukraine. The EarthStat data, which is a data product derived from satellite data and official crop reports, were also gathered for the comparison with the map of climate suitability index. The Fuzzy Union model was used to create the climate suitability maps under the historical climate conditions for the period from 1970 to 2000. These maps were compared against actual acreage and yield by province. It was found that the EarthStat data for acreage and yield of wheat differed from the corresponding official data in several provinces. On the other hand, the climate suitability index obtained using the Fuzzy Union model explained the variation in acreage and yield at a reasonable degree. For example, the correlation coefficient between the climate suitability index and yield was 0.647. Our results suggested that the climate suitability index could be used to indicate the spatial distribution of acreage and yield within a region of interest.