• Title/Summary/Keyword: Fuzzy Control System

Search Result 2,799, Processing Time 0.033 seconds

Multirate Control of Takagi-Sugeno Fuzzy System

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.672-677
    • /
    • 2004
  • In this paper, a new dual-rate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the dual-rate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

  • PDF

A combustion control modeling of coke oven by Swarm-based fuzzy system (스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링)

  • Ko, Ean-Tae;Hwang, Seok-Kyun;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF

Force control of robot manipulator using fuzzy concept

  • Sim, Kwee-Bo;Xu, Jian-Xin;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.907-912
    • /
    • 1990
  • An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

  • PDF

A FUZZY PID Control of Supply Duct Outlet Air Temperature for PEM (FUZZY PID 방법을 이용한 개별 공조시스템의 급기온도 제어)

  • 장영준;박영철;정광섭;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2002
  • The work presented here provides a control of the supply duct outlet air temperature in PEM (personal environment module) using fuzzy PID controller. In previous work, PID control systems were used, but the result shows that the outlet air temperature and electric heater regulating voltage were oscillated. Fuzzy PID control systems are designed to improve the system response obtained using PID control and implemented experimentally Also, PID controller and fuzzy controller without PID logic are provided to compare the result with that of the fuzzy PID controller. Data obtained shows that the fuzzy PID control system satisfies the design criteria and works proper1y in controlling the supply air temperature. Also it has bettor performance than the previous result obtained using PID control.

Application of fuzzy Petri nets for discrete event system control and monitoring (이산사건 시스템 제어 및 모니터링을 위한 퍼지 패트리네트 응용)

  • 노명균;홍상은
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.403-406
    • /
    • 1997
  • This paper presents a Petri net approach for the control and monitoring of discrete event system. The proposed model is fuzzy Petri nets based on the fuzzy logic with Petri nets and the hierarchy concept. Fuzzy Petri nets have been used to model the imprecise situations which can arise within automated manufacturing system, and also the hierarchy concept allow to handle the refinement of places and transition in Petri nets model. These will form the foundation of a simulator-tool with manipulation interface for application of fuzzy Petri nets.

  • PDF

High efficiency tracking system design of photovoltaic using fuzzy control (퍼지제어를 적용한 태양광 발전의 고효율 추적시스템 설계)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yon;Jung, Byung-Jin;Chung, Dong-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up. nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • So, Myeong Ok;Ryu, Gil Su;Lee, Jun Tak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.101-101
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

Fuzzy Modeling Technique of Nonlinear Dynamic System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • 소명옥;류길수;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Implementation of an Automation System Using Fuzzy Expertized Control Algorithm for the Cultivation in a Greenhouse (퍼지 전문가 제어 기법을 이용한 시설재배 자동화 소프트웨어의 구현)

  • Kim, Seung-Woo
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 2004
  • In this paper, a new approach to the automation of the cultivation in a green house is suggested and a practical automatic control cultivation system is implemented. To automatically control and optimize the very nonlinear and time-varying growth of farm products, a hybrid strategy(FECA, Fuzzy Expertized Control Algorithm) is proposed which serially combines a fuzzy expert system with the fuzzy logic control. The fuzzy expert system(FMES, Fuzzy Model-based Expert System is intended to overcome the non-linearity of the growth of farm products. The part of fuzzy controller(FLC, Fuzzy Logic Controller) is incorporated to solve the time-variance of the growth of farm products. Finally, the efficiency and the effectiveness of the implemented agricultural automation system is presented through the cultivation results.

  • PDF

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF