• Title/Summary/Keyword: Fuzzy Contrast Enhancement

Search Result 17, Processing Time 0.022 seconds

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

MR diagnosis of cranial neuritis focusing on facial neuritis: Performance of contrast-enhanced 3D-FLAIR technique

  • Lee, Ho Kyu;Koh, Myeong Ju;Kim, Seung Hyoung;Oh, Jung-Hwan
    • Journal of Medicine and Life Science
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Our purpose was to evaluate usefulness of the contrast-enhanced 3 dimensional fluid attenuated inversion recovery (3D-FLAIR) technique of half brain volume to diagnose the patients with facial neuritis based on segment-based analysis. We assessed retrospectively 17 consecutive patients who underwent brain MR imaging at 3 tesla for facial neuritis: 11 patients with idiopathic facial neuritis and 6 with herpes zoster oticus. Contrast enhanced 3D-FLAIR sequences of the half brain volume were analyzed and 3D T1-weighted sequence of the full brain volume were used as the base-line exam. Enhancement of the facial nerve was determined in each segment of 5 facial nerve segments by two radiologists. Sensitivity, specificity and accuracy of enhancement of each segment were assessed. The authors experienced a prompt fuzzy CSF enhancement in the fundus of the internal auditory canal in patients with enhancement of the canalicular segment. Interobserver agreement of CE 3D-FLAIR was excellent(${\kappa}$-value 0.885). Sensitivity, specificity, and accuracy of each segment are 1.0, 0.823, 0.912 in the canalicular segment; 0.118, 1.0, 0.559 in the labyrinthine segment; 0.823, 0.294, 0.559 in the anterior genu; 0.823, 0.529, 0.676 in the tympanic segment; 0.823, 0.235, 0.529 in the mastoid segment, respectively. In addition, those of prompt fuzzy enhancement were 0.647, 1.0, and 0.824, respectively. Incidence of prompt fuzzy enhancement with enhancement of the canalicular segment was 11 sites(55%): 6 (54.5%) in idiopathic facial neuritis and 5 (83.3%) in herpes zoster. Enhancement of the canalicular segment and prompt fuzzy enhancement on CE 3D-FLAIR was significantly correlated with occurrence of facial neuritis (p<0.001). CE 3D-FLAIR technique of the half brain volume is useful to evaluate the patients with facial neuritis as an adjunct sequence in addition to contrast-enhanced 3D T1-weighted sequence. On segment-based analysis, contrast enhancement of the canalicular segment is the most reliable. Prompt fuzzy enhancement is seen in not only herpes zoster, but in idiopathic facial neuritis.

Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement (영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.462-470
    • /
    • 2008
  • This study applies fuzzy functions to improve image quality under the assumption that uncertainty of image information due to low contrast is based on vagueness and ambiguity of the brightness pixel values. To solve the problem of low contrast images whose brightness distribution is inclined, we use the k-means algorithm as a parameter of the fuzzy function, through which automatic critical points can be found to differentiate objects from background and contrast between bright and dark points can be improved. The fuzzy function is presented at the three main stages presented to improve image quality: fuzzification, contrast enhancement and defuzzification. To measure improved image quality, we present the fuzzy index and entropy index and in comparison with those of histogram equalization technique, it shows outstanding performance.

  • PDF

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

Contrast Enhancement of Blurred Images Using Fuzzy Logic Concepts (퍼지 논리를 이용한 흐린 영상의 콘트라스트 향상)

  • 박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.181-191
    • /
    • 1994
  • A new method for enhancing blurred images using fuzzy logic concepts is proposed. Blurred images contain blurred boundaries which make it difficult to detect edges and segment areas in images. In order to sharpen blurred edges local contrast information of an image and erosion/dilation properties of local min/max operations are used in which local min/max operations are fuzzy logic operations. so that given images are transformed to fuzzy images and then these operations are applied on them. In this method the sharpening operation can be iteratively applied to the image to get better deblurring effect and gray-scale "salt-and-pepper" noises are suppressed. the efficiency of our algorithm is demonstrated through experimental results obtained with artificially-made blurred images and real blurred images.

  • PDF