• Title/Summary/Keyword: Fuzzy Contrast

Search Result 80, Processing Time 0.027 seconds

Contrast Enhancement of Blurred Images Using Fuzzy Logic Concepts (퍼지 논리를 이용한 흐린 영상의 콘트라스트 향상)

  • 박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.181-191
    • /
    • 1994
  • A new method for enhancing blurred images using fuzzy logic concepts is proposed. Blurred images contain blurred boundaries which make it difficult to detect edges and segment areas in images. In order to sharpen blurred edges local contrast information of an image and erosion/dilation properties of local min/max operations are used in which local min/max operations are fuzzy logic operations. so that given images are transformed to fuzzy images and then these operations are applied on them. In this method the sharpening operation can be iteratively applied to the image to get better deblurring effect and gray-scale "salt-and-pepper" noises are suppressed. the efficiency of our algorithm is demonstrated through experimental results obtained with artificially-made blurred images and real blurred images.

  • PDF

ART2 Based Fuzzy Binarization Method with Low Information Loss (정보손실이 적은 ART2 기반 퍼지 이진화 방법)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1269-1274
    • /
    • 2014
  • In computer vision research, binarization procedure is one of the most frequently used tools to discriminate target objects from background in grey level binary image. Fuzzy binarization is a reliable technique in environment with high uncertainty such as medical image analysis by setting the threshold as the average of minimum and maximum brightness with triangle type fuzzy membership function. However, this technique is also known as contrast sensitive method thus its discrimination power is not so great when the image has low contrast difference between objects and backgrounds and suffer from information loss as a result. Thus, in this paper, we propose a fuzzy binarization using ART2 algorithm to handle such low contrast image analysis. Proposed ART2 algorithm is applied to determine the medium point of membership function in the fuzzy binarization paradigm. The proposed methods shows low information loss rate in our experiment.

Optimal Sub-bands Decision for Robust Watermarking (강건한 워터마킹을 위한 최적 부대역 결정)

  • Kim, Yoon-Ho;Kim, Tae-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • This paper is concerned with fuzzy inference-based optimal sub-bands decision scheme which is to be embedded the watermark. It concentrated not only on design of fuzzy inference algorithm but also on human visual parameters (HVP), such as contrast sensitivity, texture degree. In the first, such human visual parameters as contrast sensitivity, texture degree as well as statistical characteristics are involved to select the optimal coefficients region. Secondly, fuzzy if - then rule which can be able to adapt the wide variety of environments is developed. The performance of proposed approach is evaluated with respect to the imperceptibility and correctness of watermark. According to some experimental results, contrast sensitivity function is superior in smooth image. On the other hand, statistical characteristics provide good results in rough images.

  • PDF

An Optimal Algorithm for Enhancing the Contrast of Chest Images Using the Frequency Filters Based on Fuzzy Logic

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • Chest X-ray image cannot be focused in the same manner as optical lenses and the resultant image generally tends to be slightly blurred. Therefore, appropriate methods to improve the quality of chest X-ray image have been studied in this paper. As the frequency domain filters work well for slight blurring and moderate levels of additive noises, we propose an algorithm that is particularly suitable for enhancing chest image. First, the chest image using Gaussian high pass filter and the optimal high frequency emphasis filter shows improvements in the edges and contrast of the flat areas. Second, as compared to using histogram equalization where each pixel of chest image is characterized by a loss of detail and much noises, in using fuzzy logic, each pixel of chest image shows the detail preservation and little noise.

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

FIXED POINT THEOREMS FOR WEAK CONTRACTION IN INTUITIONISTIC FUZZY METRIC SPACE

  • Vats, Ramesh Kumar;Grewal, Manju
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.337-357
    • /
    • 2016
  • The notion of weak contraction in intuitionistic fuzzy metric space is well known and its study is well entrenched in the literature. This paper introduces the notion of (${\psi},{\alpha},{\beta}$)-weak contraction in intuitionistic fuzzy metric space. In this contrast, we prove certain coincidence point results in partially ordered intuitionistic fuzzy metric spaces for functions which satisfy a certain inequality involving three control functions. In the course of investigation, we found that by imposing some additional conditions on the mappings, coincidence point turns out to be a fixed point. Moreover, we establish a theorem as an application of our results.

Variational Image Dehazing using a Fuzzy Membership Function

  • Park, Hasil;Park, Jinho;Kim, Heegwang;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • This paper presents a dehazing method based on a fuzzy membership function and variational method. The proposed algorithm consists of three steps: i) estimate transmission through a pixel-based operation using a fuzzy membership function, ii) refine the transmission using an L1-norm-based regularization method, and iii) obtain the result of haze removal based on a hazy image formation model using the refined transmission. In order to prevent color distortion of the sky region seen in conventional methods, we use a trapezoid-type fuzzy membership function. The proposed method acquires high-quality images without halo artifacts and loss of color contrast.

FUZZY ADAPTIVE CONTROL ENVIRONMENT USING LYAPUNOV FUNCTONS : FACE

  • Matia, F.;Jimenez, A.;Sanz, R.;Galan, R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.765-768
    • /
    • 1993
  • Adaptive Control is used in order to improve close loop dynamics with a fuzzy controller when process parameters are unknown or fluctuate form an initial value. The way in which the adaptive control environment may be applied is the following. First we obtain a linear fuzzy controller. Second, we apply the adaptive rules by means of actuating directly over fuzzy variables which change their value. The techniques are based on Lyapunov functions. Third, we comment about extending this method to non-piecewise linear controllers using the contrast definition for a fuzzy controller.

  • PDF