• 제목/요약/키워드: Fuzzy Cognitive Map

검색결과 47건 처리시간 0.023초

웹사이트 디자인을 위한 요인분석에서 퍼지인식도의 활용 방법론

  • 정기호
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2001년도 추계학술대회 발표논문집:차세대 전상거래 시대의 비즈니스전략
    • /
    • pp.340-347
    • /
    • 2001
  • 전자상거래를 위한 인터넷의 웹사이트 구축 문제는 기업이나 조직의 중요한 새로운 마케팅 창구로서의 역할 때문에 그 중요성을 인식하고 효과적 디자인을 기반한 사이트구축이 이슈화 되었다. 그리하여 성공적인 인터넷 비즈니스를 위한 웹사이트의 구축 방법론이나 가이드라인의 연구가 필요하게 되며, 최근 소비자의 행동을 분석하여 이를 소비자 구매욕구를 증진시키는 방안으로 활용하여 전략적인 웹사이트를 구축하도록 제시하는 많은 연구들이 제시되고 있다. 그러나 전략적인 관점에서 웹사이트를 구축하거나 이미 구축된 웹사이트를 전략적 관점에서 개편하려고 할 때 사용될 수 있는 뚜렷한 방법론이 존재하지 않기 때문에 이런 관점의 분석모형이 절대적으로 필요한 실정이다. 이에 본 연구에서는 전략 형성과정에서 유용하게 사용될 수 있는 FCM(Fuzzy Cognitive Map)을 소개하고 이를 바탕으로 보다 구체적인 웹사이트 디자인 요소를 분석, 평가 할 수있는 방안을 제시하고자 한다. 본 논문에서 제시하는 FCM기반의 분석은 웹사이트의 성공요인들로 꼽히는 요인들간의 인과관계를 고려하여 웹사이트 구축의 요인간의 영향력의 민감도 분석을 할 수 있는 접근법으로서의 활용도가 기대된다.

  • PDF

PCA-기반 고장 진단 시스템 설계에 관한 연구 (A study on the design of fault diagnostic system based on PCA)

  • 김성호;이영삼;한윤종
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.600-605
    • /
    • 2003
  • 주성분 분석은 공정의 모니터링과 고장진단을 위한 유용한 방법으로 알려져 있으며 일반적으로 잔차와 주성분의 해석을 통하여 고장의 원인을 분류하고 있다. 대규모 공정에서는 이러한 방법이 적용상의 한계를 가지고 있다. 본 논문에서는 보다 향상된 고장진단을 위해 주성분 분석에 FCM-기반 고장 진단 알고리즘을 결합하였고 Two-tank 시스템을 이용하여 주성분 분석을 이용한 FCM-기반 고장진단 알고리즘의 구현하여 적용하였다.

효과적인 지식창출을 위한 인터넷 상의 지식채굴과정: 주식시장에의 응용 (Knowledge Discovery Process In Internet For Effective Knowledge Creation: Application To Stock Market)

  • 김경재;홍태호;한인구
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.105-113
    • /
    • 1999
  • 최근 데이터와 데이터베이스의 폭발적 증가에 따라 무한한 데이터 속에서 정보나 지식을 찾고자하는 지식채굴과정 (knowledge discovery process)에 대한 관심이 높아지고 있다. 특히 기업 내외부 데이터베이스 뿐만 아니라 데이터웨어하우스 (data warehouse)를 기반으로 하는 OLAP환경에서의 데이터와 인터넷을 통한 웹 (web)에서의 정보 등 정보원의 다양화와 첨단화에 따라 다양한 환경 하에서의 지식채굴과정이 요구되고 있다. 본 연구에서는 인터넷 상의 지식을 효과적으로 채굴하기 위한 지식채굴과정을 제안한다. 제안된 지식채굴과정은 명시지 (explicit knowledge)외에 암묵지 (tacit knowledge)를 지식채굴과정에 반영하기 위해 선행지식베이스 (prior knowledge base)와 선행지식관리시스템 (prior knowledge management system)을 이용한다. 선행지식관리시스템은 퍼지인식도(fuzzy cognitive map)를 이용하여 선행지식베이스를 구축하여 이를 통해 웹에서 찾고자 하는 유용한 정보를 정의하고 추출된 정보를 지식변환시스템 (knowledge transformation system)을 통해 통합적인 추론과정에 사용할 수 있는 형태로 변환한다. 제안된 연구모형의 유용성을 검증하기 위하여 재무자료에 선행지식을 제외한 자료와 선행지식을 포함한 자료를 사례기반추론 (case-based reasoning)을 이용하여 실험한 결과, 제안된 지식채굴과정이 유용한 것으로 나타났다.

  • PDF

효과적인 지식창출을 위한 인터넷 상의 지식채굴과정 : 주식시장에의 응용 (Knowledge Discovery Process In Internet For Effective Knowledge Creation : Application To Stock Market)

  • 김경재;홍태호;한인구
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.105-113
    • /
    • 1999
  • 최근 데이터와 데이터베이스의 폭발적 증가에 따라 무한한 데이터 속에서 정보나 지식을 찾고자하는 지식채굴과정(Knowledge discovery process)에 대한 관심이 높아지고 있다. 특히 기업 내외부 데이터베이스 뿐만 아니라 데이터웨어하우스(data warehouse)를 기반으로 하는 OLAP 환경에서의 데이터와 인터넷을 통한 웹(web)에서의 정보 등 정보원의 다양화와 첨단화에 따라 다양한 환경 하에서의 지식 채굴과정이 요구되고 있다. 본 연구에서는 인터넷 상의 지식을 효과적으로 채굴하기 위한 지식채굴과정을 제안한다. 제안된 지식채굴과정은 명시지(explicit knowledge)외에 암묵지(tacit knowledge)를 지식채굴과정에 반영하기 위해 선행지식베이스(prior knowledge base)와 선행지식관리시스템(prior knowledge management system)을 이용한다. 선행지식관리시스템은 퍼지인식도(fuzzy cognitive map)를 이용하여 선행지식베이스를 구축하여 이를 통해 웹에서 찾고자 하는 유용한 정보를 정의하고 추출된 정보를 지식변환시스템(knowledge transformation system)을 통해 통합적인 추론과정에 사용할 수 있는 형태로 변환한다. 제안된 연구모형의 유용성을 검증하기 위하여 재무자료에 선행지식을 제외한 자료와 선행지식을 포함한 자료를 사례기반추론 (case-based reasoning)을 이용하여 실험한 결과, 제안된 지식채굴과정이 유용한 것으로 나타났다.

  • PDF

FCM과 TAM recall 과정을 이용한 고장진단 (Fault diagnosis using FCM and TAM recall process)

  • 이기상;박태홍;정원석;최낙원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.233-238
    • /
    • 1993
  • In this paper, two diagnosis algorithms using the simple fuzzy, cognitive map (FCM) that is an useful qualitative model are proposed. The first basic algorithm is considered as a simple transition of Shiozaki's signed directed graph approach to FCM framework. And the second one is an extended version of the basic algorithm. In the extension, three important concepts, modified temporal associative memory (TAM) recall, temporal pattern matching algorithm and hierarchical decomposition are adopted. As the resultant diagnosis scheme takes short computation time, it can be used for on-line fault diagnosis of large scale and complex processes that conventional diagnosis methods cannot be applied. The diagnosis system can be trained by the basic algorithm and generates FCM model for every experienced process fault. In on-line application, the self-generated fault model FCM generates predicted pattern sequences, which are compared with observed pattern sequences to declare the origin of fault. In practical case, observed pattern sequences depend on transport time. So if predicted pattern sequences are different from observed ones, the time weighted FCM with transport delay can be used to generate predicted ones. The fault diagnosis procedure can be completed during the actual propagation since pattern sequences of tvo different faults do not coincide in general.

  • PDF

자가적응모듈과 퍼지인식도가 적용된 하이브리드 침입시도탐지모델 (An Hybrid Probe Detection Model using FCM and Self-Adaptive Module)

  • 이세열
    • 디지털산업정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.19-25
    • /
    • 2017
  • Nowadays, networked computer systems play an increasingly important role in our society and its economy. They have become the targets of a wide array of malicious attacks that invariably turn into actual intrusions. This is the reason computer security has become an essential concern for network administrators. Recently, a number of Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of intrusion. Therefore, probe detection has become a major security protection technology to detection potential attacks. Probe detection needs to take into account a variety of factors ant the relationship between the various factors to reduce false negative & positive error. It is necessary to develop new technology of probe detection that can find new pattern of probe. In this paper, we propose an hybrid probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) in dynamic environment such as Cloud and IoT. Also, in order to verify the proposed method, experiments about measuring detection rate in dynamic environments and possibility of countermeasure against intrusion were performed. From experimental results, decrease of false detection and the possibilities of countermeasures against intrusions were confirmed.

Web Cogmulator : 퍼지 인식도를 이용한 웹 디자인 시뮬레이터에 관한 연구 (Web Cogmulator : The Web Design Simulator Using Fuzzy Cognitive Map)

  • 이건창;정남호;조형래
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.357-364
    • /
    • 2000
  • 기존의 웹 디자인은 웹이라는 매체의 특성 상 디자인적인 요소가 매우 중요함에도 불구하고 디자인은 위한 구체적인 방법론이 미약하다. 특히, 많은 소비자들을 유인하고 구매를 촉발시켜야 하는 인터넷 쇼핑몰의 경우에는 더욱 더 그럼하에도 불구하고 이를 위한 전략적인 방법론이 부족하다. 즉, 기존 연구들은 제품의 다양성, 서비스, 촉진, 항해량, 편리성, 사용자 인터페이스 등이 중요하다고 하였지만 실제 인터넷 쇼핑몰을 디자인하는 입장에서는 활용하기가 상당히 애매하다. 그 이유는 이들 요인들은 서로 영향관계를 가지고 있어서 사용자 인터페이스가 복잡하면 항해량이 늘어나 편리성이 감소하고, 제품이 늘어나더라도 검색엔진을 사용하면 상대적으로 항해량이 감소하게 되어 편리성이 증가한다. 따라서, 이들 요인을 활용하여 인터넷 쇼핑몰을 구축하려면 요인간의 영향관계를 면밀히 파악하고 이 영향요인이 소비자의 구매행동에 어떠한 영향을 주는지가 충분히 검토되어야 한다.이에 본 연구에서는 퍼지인식도를 이용하여 인터넷 쇼핑몰 상에서 소비자의 구매행동에 영향을 주는 요인을 추출하고 이들 요인간의 인과관계를 도출하여 보다 구체적이고 전략적으로 인터넷 쇼핑몰을 디자인할 수 있는 방법으로 web-Cogmulator를 제시한다. Web-Cogmulator는 소비자의 쇼핑몰에 대한 암묵지식 형태의 구매행동을 형태지식화하여 지식베이스 형태로 가지고 있기 때문에 인터넷 쇼핑몰의 다양한 요인의 변화에 따른 소비자의 구매행동을 추론 시뮬레이션하는 것이 가능하다. 이에 본 연구에서는 기본적인 인터넷 쇼핑몰 시나리오를 바탕으로 추론 시뮬레이션을 실시하여 Web-Cogmulator의 유용성을 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computati

  • PDF