• 제목/요약/키워드: Fuzzy C-means Clustering

검색결과 310건 처리시간 0.026초

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

전기철도차량 경제운전 모형 개발 (Development of Economical Run Model for Electric Railway Vehicle)

  • 이태형;황희수
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.76-80
    • /
    • 2006
  • The Optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model have been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme are utilized, respectively. As a result, two meta-models for trip time and energy consumption were constructed. The optimization to search an economical running pattern was achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석 (Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function)

  • 이동윤
    • 디지털융복합연구
    • /
    • 제12권4호
    • /
    • pp.277-283
    • /
    • 2014
  • 퍼지모델링은 일반적으로 주어진 데이터를 이용하고 퍼지규칙은 입력변수를 선정하고 각 입력변수에 대한 입력공간을 분할함으로써 입력변수 및 공간분할에 의해 확립된다. 퍼지규칙의 전반부는 입력변수, 공간분할 수 및 소속 함수를 선정하고 본 논문에서 후반부는 선형추론 및 변형된 이차식에 의해 다항식함수의 형태로 나타낸다. 전반부 파라미터의 동정은 입출력 데이터의 최소값과 최대값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력공간을 분할한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준최소자승법에 의해 수행된다. 본 논문에서 전반부 소속 함수는 사다리꼴형 멤버쉽 함수를 사용하여 입력공간을 분할하고 비선형공정에서 널리 이용되는 가스로데이터를 사용하여 성능을 평가한다.

MPEG 비디오 프레임에서 FCM 클러스터링 기법을 이용한 효과적인 장면 전환 검출 (Efficient Shot Change Detection Using Clustering Method on MPEG Video Frames)

  • 임성재;이배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.751-754
    • /
    • 2000
  • In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.

  • PDF

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.