• Title/Summary/Keyword: Fuzzy Boundary

Search Result 138, Processing Time 0.022 seconds

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

The application of fuzzy spatial overlay method to the site selection using GSIS (GSIS를 이용한 입지선정에 있어 퍼지공간중첩기법의 적용에 관한 연구)

  • 임승현;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.177-187
    • /
    • 1999
  • Up to date, in many application fields of GSIS, we usually have used vector-based spatial overlay or grid-based spatial algebra for extraction and analysis of spatial data. But, because these methods are based on traditional crisp set, concept which is used these methods. shows that many kinds of spatial data are partitioned with sharp boundary. That is not agree with spatial distribution pattern of data in the real world. Therefore, it has a error that a region or object is restricted within only one attribution (One-Entity-one-value). In this study, for improving previous methods that deal with spatial data based on crisp set, we are suggested to apply into spatial overlay process the concept of fuzzy set which is good for expressing the boundary vagueness or ambiguity of spatial data. two methods be given. First method is a fuzzy interval partition by fuzzy subsets in case of spatially continuous data, and second method is fuzzy boundary set applied on categorical data. with a case study to get a land suitability map for the development site selection of new town, we compared results between Boolean analysis method and fuzzy spatial overlay method. And as a result, we could find out that suitability map using fuzzy spatial overlay method provide more reasonable information about development site of new town, and is more adequate type in the aspect of presentation.

  • PDF

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

Solution of the boundary value problem for the second order ordinary differential equations by a fuzzy system (2계 선형상미방 경계치문제의 퍼지시스템 해법)

  • 문병수;정종은;황인구;김정수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.289-292
    • /
    • 2002
  • 2계 선형 상미분방정식의 경계치 문제는 보통 해를 구하고자 하는 구간의 양 끝점에서 도함수의 값을 임의로 선정한 후 각 점에서 초기치 문제의 해를 구한 다음 적절한 1차 결합을 이용하여 구하게 된다. 이 경우 초기값과 도함수 값을 사용한 반복연산이 수반되며 따라서 오차의 누적이 불가피 하게 된다. 이 논문에서는 이같은 오차의 누적을 피할 뿐 아니라 3차 Spline 함수를 사용함으로써 오차가 O( $h^2$)인 해를 구하는 방법에 대하여 기술한다 두 개의 경계조건과 근사값을 구하고자 하는 점에서의 함수 값을 "If x is $B_{i}$, then f is $C_{i}$"와 같은 Fuzzy Rule들로 변형하고 주어진 미분방정식을 상수 $C_{i}$들의 관계식으로 변형하여 해를 구하였다. 산출된 결과로부터의 보간 연산은 Fuzzy System사용에 의하여 대체되었다. 이상의 방법으로 산출한 해의 근사오차가 O( $h^2$).임을 증명하였으며 3개의 예제에 대한 계산결과를 4계 Runge-Kutta 방법에 의한 해와 비교하여 기술하였다였다였다였다

  • PDF

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

An LMI-based Stable Fuzzy Control System Design with Pole-Placement Constraints

  • Hong, Sung-Kyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.87-93
    • /
    • 1999
  • This paper proposes a systematic designs methodology for the Takagi-Sugeno (TS) model based fuzzy control systems with guaranteed stability and pre-specified transient performance for the application to a nonlinear magnetic bearing system. More significantly, in the proposed methodology , the control design problems which considers both stability and desired transient performance are reduced to the standard LMI problems . Therefore, solving these LMI constraints directly (not trial and error) leads to a fuzzy state-feedback controller such that the resulting fuzzy control system meets above two objectives. Simulation and experimentation results show that the proposed LMI-based design methodology yields only the maximized stability boundary but also the desired transient responses.

  • PDF

Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo;Baek Yong-Sun;Lee Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.460-465
    • /
    • 2006
  • This paper presents a new fuzzy learning rule which considers the Euclidean distances between the input vector and the prototypes of classes. The new fuzzy learning rule is integrated into the supervised IAFC neural network 4. This neural network is stable and plastic. We used iris data to compare the performance of the supervised IAFC neural network 4 with the performances of back propagation neural network and LVQ algorithm.

An LMI-Based Fuzzy State Feedback Control with Multi-objectives

  • Hong, Sung-Kyung;Yoonsu Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2003
  • This paper proposes a systematic design methodology for the Takagi-Sugeno (TS) model based fuzzy state feedback control system with multi-objectives. In this investigation, the objectives are set to be guaranteed stability and pre-specified transient performance, and this scheme is applied to a nonlinear magnetic bearing system. More significantly, in the proposed methodology, the control design problems that consider both stability and desired transient performance are reduced to the standard LMI problems. Therefore, solving these LMI constraints directly (not trial and error) lead to a fuzzy state-feedback controller such that the resulting fuzzy control system meets the above two objectives. Simulation and experimentation results show that the Proposed LMI-based design methodology yields not only maximized stability boundary but also the desired transient responses.

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.