• Title/Summary/Keyword: Futures Trading

Search Result 80, Processing Time 0.021 seconds

KOSPI directivity forecasting by time series model (시계열 모형을 이용한 주가지수 방향성 예측)

  • Park, In-Chan;Kwon, O-Jin;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.

  • PDF

Effect of Order and Trading Variables in KOSPI200 Futures on Bid-Ask Spread (주가지수선물의 주문 및 거래변수가 호가스프레드에 미치는 영향)

  • Kim, Young-Kyu;Shin, Yeon-Soo
    • The Korean Journal of Financial Management
    • /
    • v.17 no.1
    • /
    • pp.181-202
    • /
    • 2000
  • 본 연구는 지수선물 시장에서 호가스프레드에 영향을 줄 수 있는 요인변수를 탐색하였다. 호가스프레드는 1996년 5월 3일부터 1997년 7월 31일까지 일중 4시간 5분의 거래시간을 5분 간격으로 나누어 49개의 시간대별 잔량을 구하여 호가스프레드를 계산하였으며, 요인변수는 주문 거래자료를 이용하여 산출하였다. 분석결과는 다음과 같다. 첫째로, 호가스프레드 측정결과 개장직후 10분과 폐장직전 10분간의 호가스프레드가 다른 시간대보다 크게 나타났다. 우리나라 주가지수선물시장에서도 이상의 두 시간대에서는 거래자들이 현저히 높은 정보불균형이 있었고, 역선택과정이 심한 것으로 보여진다. 이는 McInish와 Wood(1992) 및 Jang과 Lee(1995) 그리고 Daigler(1997)의 U자형 패턴과 유사하게 나타났다. 둘째로, 거래빈도, 총주문량은 호가스프레드에 유의적인 음(-)의 영향을 주어 호가스프레드를 줄이는데 정보적 역할을 하고 있었던 것으로 생각된다. 그리고 주문빈도 및 변동성과 수익률이 모두 호가스프레드에 유의적인 양(+)의 영향을 주고 있었다. 회귀분석결과 관찰자료로 총주문량, 거래빈도가 유동성변수로서 의미가 있었고, 묵시적 거래비용을 줄여줄 수 있을 것이라 보여진다. 한편 주문빈도는 정보탐색을 위한 허수주문으로 여겨진다. 우리나라 선물시장에서는 투자자들이 가격 변동성에 대한 보상을 원하고 있었다. 일반적으로 투자자들은 가격위험하에서는 거래 체결을 원하지 않기 때문에 이러한 점이 호가스프레드를 커지게 하였던 원인으로 보여진다.

  • PDF

WHICH INFORMATION MOVES PRICES: EVIDENCE FROM DAYS WITH DIVIDEND AND EARNINGS ANNOUNCEMENTS AND INSIDER TRADING

  • Kim, Chan-Wung;Lee, Jae-Ha
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.1
    • /
    • pp.233-265
    • /
    • 1996
  • We examine the impact of public and private information on price movements using the thirty DJIA stocks and twenty-one NASDAQ stocks. We find that the standard deviation of daily returns on information days (dividend announcement, earnings announcement, insider purchase, or insider sale) is much higher than on no-information days. Both public information matters at the NYSE, probably due to masked identification of insiders. Earnings announcement has the greatest impact for both DJIA and NASDAQ stocks, and there is some evidence of positive impact of insider asle on return volatility of NASDAQ stocks. There has been considerable debate, e.g., French and Roll (1986), over whether market volatility is due to public information or private information-the latter gathered through costly search and only revealed through trading. Public information is composed of (1) marketwide public information such as regularly scheduled federal economic announcements (e.g., employment, GNP, leading indicators) and (2) company-specific public information such as dividend and earnings announcements. Policy makers and corporate insiders have a better access to marketwide private information (e.g., a new monetary policy decision made in the Federal Reserve Board meeting) and company-specific private information, respectively, compated to the general public. Ederington and Lee (1993) show that marketwide public information accounts for most of the observed volatility patterns in interest rate and foreign exchange futures markets. Company-specific public information is explored by Patell and Wolfson (1984) and Jennings and Starks (1985). They show that dividend and earnings announcements induce higher than normal volatility in equity prices. Kyle (1985), Admati and Pfleiderer (1988), Barclay, Litzenberger and Warner (1990), Foster and Viswanathan (1990), Back (1992), and Barclay and Warner (1993) show that the private information help by informed traders and revealed through trading influences market volatility. Cornell and Sirri (1992)' and Meulbroek (1992) investigate the actual insider trading activities in a tender offer case and the prosecuted illegal trading cased, respectively. This paper examines the aggregate and individual impact of marketwide information, company-specific public information, and company-specific private information on equity prices. Specifically, we use the thirty common stocks in the Dow Jones Industrial Average (DJIA) and twenty one National Association of Securities Dealers Automated Quotations (NASDAQ) common stocks to examine how their prices react to information. Marketwide information (public and private) is estimated by the movement in the Standard and Poors (S & P) 500 Index price for the DJIA stocks and the movement in the NASDAQ Composite Index price for the NASDAQ stocks. Divedend and earnings announcements are used as a subset of company-specific public information. The trading activity of corporate insiders (major corporate officers, members of the board of directors, and owners of at least 10 percent of any equity class) with an access to private information can be cannot legally trade on private information. Therefore, most insider transactions are not necessarily based on private information. Nevertheless, we hypothesize that market participants observe how insiders trade in order to infer any information that they cannot possess because insiders tend to buy (sell) when they have good (bad) information about their company. For example, Damodaran and Liu (1993) show that insiders of real estate investment trusts buy (sell) after they receive favorable (unfavorable) appraisal news before the information in these appraisals is released to the public. Price discovery in a competitive multiple-dealership market (NASDAQ) would be different from that in a monopolistic specialist system (NYSE). Consequently, we hypothesize that NASDAQ stocks are affected more by private information (or more precisely, insider trading) than the DJIA stocks. In the next section, we describe our choices of the fifty-one stocks and the public and private information set. We also discuss institutional differences between the NYSE and the NASDAQ market. In Section II, we examine the implications of public and private information for the volatility of daily returns of each stock. In Section III, we turn to the question of the relative importance of individual elements of our information set. Further analysis of the five DJIA stocks and the four NASDAQ stocks that are most sensitive to earnings announcements is given in Section IV, and our results are summarized in Section V.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on Foreign Exchange Risk Managements in the Korean Agro-food Industry (환율변동에 따른 농식품산업 무역적자 관리방안에 관한 연구)

  • Lim, Sung-Soo;Nam, Jae-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.133-140
    • /
    • 2019
  • This study examines the reason of a staggering trade deficit on the Korean agro-food industry. To achieve the goal of the study, this study suggests the policy implication for enlargement a trade deficit with foreign exchange rate. Despite the majority of grain importer does realize that there is a huge affection for price volatility on the business result, they are more likely to take flat pricing through the physical market to avoid risk of price volatility with exchange rate. Also the analysis of external and internal environments around the Korean agro-food export & import are conducted, particularly with the analysis of trade volume and food price affecting the export & import. Results from a survey show that the common factor to the effective use of overseas agricultural and foreign currency futures trading for grain traders in Korea.

An Analysis of the Effects of WTI on Korean Stock Market Using HAR Model (국내 주식시장 변동성에 대한 국제유가의 영향: 이질적 자기회귀(HAR) 모형을 사용하여)

  • Kim, Hyung-Gun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.535-555
    • /
    • 2021
  • This study empirically analyzes the effects of international oil prices on domestic stock market volatility. The data used for the analysis are 10-minute high-frequency data of the KOSPI index and WTI futures price from January 2, 2015, to July 30, 2021. For using the high-frequency data, a heterogeneous autoregression (HAR) model is employed. The analysis model utilizes the advantages of high frequency data to observe the impact of international oil prices through realized volatility, realized skewness, and kurtosis as well as oil price return. In the estimation, the Box-Cox transformation is applied in consideration of the distribution of realized volatility with high skewness. As a result, it finds that the daily return fluctuation of the WTI price has a statistically significant positive (+) effect on the volatility of the KOSPI return. However, the volatility, skewness, and kurtosis of the WTI return do not appear to affect the volatility of the KOSPI return. This result is believed to be because the volatility of the KOSPI return reflects the daily change in the WTI return, but does not reflect the intraday trading behavior of investors.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

Development Strategies for Local Assemblers of Agricultural Products (농산물 산지유통인의 제도권 편입 방안)

  • Kim, Dong-Hwan
    • Journal of Distribution Research
    • /
    • v.16 no.5
    • /
    • pp.1-18
    • /
    • 2011
  • Local assemblers of agricultural products perform important distribution functions such as providing sales outlets, labor forces, market information, and financing, forward contracting, farming, physical distribution, and etc. However, their business activities are not transparent and producers are not effectively protected from unfair practices done by local assemblers. In order to enhance transparency and to increase effectiveness of governmental policies, local assemblers, which are mostly private management, should be organized as corporations. In order to organize corporations, the government should emphasize the importance of education and should provide corporations with governmental funds for improvement of agricultural distribution. Corporations should be developed to marketing cooperatives in the long run, and are requested to form their federations. It is also necessary to have transparent forward contracting system by local assemblers. In order to have transparent system, producers and local assemblers are guided to use standard contract forms and to operate offices handling unfair trade practices by local assemblers. We also need a place to exchange forward contracts, which can be developed to a futures market in the long run. In summary, local assemblers of agricultural products, which are mostly private management, should be developed to corporations and be operated by a transparent manner in order to protect agricultural producers and increase efficiency of trading.

  • PDF

Framework of Stock Market Platform for Fine Wine Investment Using Consortium Blockchain (공유경제 체제로서 컨소시엄 블록체인을 활용한 와인투자 주식플랫폼 프레임워크)

  • Chung, Yunkyeong;Ha, Yeyoung;Lee, Hyein;Yang, Hee-Dong
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.45-65
    • /
    • 2020
  • It is desirable to invest in wine that increases its value, but wine investment itself is unfamiliar in Korea. Also, the process itself is unreasonable, and information is often forged, because pricing in the wine market is done by a small number of people. With the right solution, however, the wine market can be a desirable investment destination in that the longer one invests, the higher one can expect. Also, it is expected that the domestic wine consumption market will expand through the steady increase in domestic wine imports. This study presents the consortium block chain framework for revitalizing the wine market and enhancing transparency as the "right solution" of the nation's wine investment market. Blockchain governance can compensate for the shortcomings of the wine market because it guarantees desirable decision-making rights and accountability. Because the data stored in the block chain can be checked by consumers, it reduces the likelihood of counterfeit wine appearing and complements the process of unreasonably priced. In addition, digitization of assets resolves low cash liquidity and saves money and time throughout the supply chain through smart contracts, lowering entry barriers to wine investment. In particular, if the governance of the block chain is composed of 'chateau-distributor-investor' through consortium blockchains, it can create a desirable wine market. The production process is stored in the block chain to secure production costs, set a reasonable launch price, and efficiently operate the distribution system by storing the distribution process in the block chain, and forecast the amount of orders for futures trading. Finally, investors make rational decisions by viewing all of these data. The study presented a new perspective on alternative investment in that ownership can be treated like a share. We also look forward to the simplification of food import procedures and the formation of trust within the wine industry by presenting a framework for wine-owned sales. In future studies, we would like to expand the framework to study the areas to be applied.

Rollover Effects on KOSPI 200 Index Option Prices (KOSPI 200 지수 옵션 만기시 Rollover 효과에 관한 연구)

  • Kim, Tae-Yong;Lee, Jung-Ho;Cho, Jin-Wan
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.71-91
    • /
    • 2005
  • The object or this paper is to analyze the rollover effect on KOSPI 200 index option prices. Especially we analyze the implied volatilities of the options that became the near maturity options as the old one expired. For this analysis, a panel data of KOSPI 200 Index Option Prices from year 1999 to year 2001 were used, and following results were obtained. First, after controlling for the underlying index returns, strike prices and other pricing factors, the call option prices tend to decrease while the put option prices tend to increase during the week of expiry. Second, if one concentrates on the daily price changes, call option prices tend to go up on Thursday (as the old options expire), and then experience a price decrease on the following day, while the reverse is true for the put options. These results imply that the option prices are affected by some of the market micro-structure effects such as whether the option is the near maturity option. We conjecture that the reason for this is related to the undervaluation of KOSPI 200 futures. The results from this paper have implications on the timing of option trades. If one wants to buy put options, and/or sell call options, he has better off by executing his intended trades before the old options expire. On the other hand, if one wants to buy call options, and/or sell put options, hi has better off by executing his intended trades after the expiry.

  • PDF