• Title/Summary/Keyword: Futures Market

Search Result 137, Processing Time 0.027 seconds

Analysis of the maintenance margin level in the KOSPI200 futures market (KOSPI200 선물 유지증거금률에 대한 실증연구)

  • Kim, Joon;Kim, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.85-95
    • /
    • 2005
  • The margin level in the futures market platys an important role in balancing the default probability with the investor's opportunity cost. In this paper, we investigate whether the movement of KOSPI200 futures daily prices can be modeled with the extreme value theory. Based on this investigation, we examine the validity of the margin level set by the extreme value theory. Moreover, we propose an expected profit-maximization model for securities companies. In this model, the extreme value theory is used for cost estimation, and a regression analysis is used for revenue calculation. Computational results are presented to compare the extreme value distribution with the empirical distribution of margin violation in KOSPI200 and to examine the suitability of the expected profit-maximization model.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Using rough set to develop the optimization strategy of evolving time-division trading in the futures market (러프집합을 활용한 캔들스틱 트레이딩 최적화 전략)

  • Kim, Hyun-Ho;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.881-893
    • /
    • 2012
  • This paper proposes to develop system trading strategy using rough set, decision tree in futures market. While there is a great deal of literature about the analysis of data mining, there is relatively little work on developing trading strategies in futures markets. There are three objectives in this paper. The first objective is to analysis performance of decision tree in rule-based system trading. The second objective is to find proper profitable trading interval. The last objective is to find optimized training period of trading rule training. The results of this study show that proposed model is useful trading strategy in foreign exchange market and can be desirable solution which gives lots of investors an important investment information.

The Impact of Index Future Introduction on Spot Market Returns and Trading Volume: Evidence from Ho Chi Minh Stock Exchange

  • NGUYEN, Anh Thi Kim;TRUONG, Loc Dong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.51-59
    • /
    • 2020
  • The objective of this study is to enrich the literature by investigating the impact of introduction of index future trading on spot market returns and trading volume in Vietnam. Data used in this study mainly consist of daily VN30-Index and market trading volume series during the period from February 6th, 2012 to December 31st, 2019. Using OLS, GARCH(1,1) and EGARCH(1,1) models, the empirical findings consistently confirm that the introduction of index future trading has no impact on the spot market returns. In addition, the results of the EGARCH(1,1) model indicate that the leverage effect on the spot market volatility is existence in HOSE. Specifically, bad news has a greater effect on the market volatility than good news of the same size. Moreover, our empirical findings reveal that the introduction of index future contracts has the positive impact on the underlying market trading volume. Specifically, the trading volume of the post-index futures introduction increases by 7.5 percent compared with the pre-index futures introduction. Finally, the results obtained from the Granger causality test for the relationship between the spot market returns and the future trading activity confirm that only uni-directional causality running from the market returns to the future trading activity exists in HOSE.

A Characteristic Analysis and Countermeasure Study of the Hedging of Listed Companies in China Stock Markets

  • WU, Guo-Hua;JIANG, Xiao-Ling;DENG, Su-Ya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.10
    • /
    • pp.147-158
    • /
    • 2021
  • Due to COVID-19, the risk of price volatility in commodity and equity markets increases. The research and application of hedging is the most effective way to reduce the market risk. Hedging is a risk management strategy employed to offset losses in investments by taking an opposite position in a related asset. We use K-means and hierarchical clustering methods to cluster companies and futures products respectively, and analyze the relationship between the number of hedging firms, regional distribution, nature of firms, capital distribution, company size, profitability, number of local Futures Commission Merchants (FCMs), regional location, and listing time. The study shows that listed companies with large scale and good profitability invest more money in hedging, while state-owned enterprises' participation in hedging is more likely to be affected by the company size and the number of local futures commission merchants, and private enterprises are more likely to be affected by the company profitability and the regional location. Listed companies are more willing to choose long-listed and mature futures products for hedging. We also provide policy advice based on our conclusion. So far, there is no study on the characteristics of hedging. This paper fills the gap. The results provide a basis and guidance for people's investment and risk management. Using clustering analysis in hedging study is another innovation of this paper.

The Analysis and Comparison of the Hedging Effectiveness for Currency Futures Markets : Emerging Currency versus Advanced Currency (통화선물시장의 헤징유효성 비교 : 신흥통화 대 선진통화)

  • Kang, Seok-Kyu
    • The Korean Journal of Financial Management
    • /
    • v.26 no.2
    • /
    • pp.155-180
    • /
    • 2009
  • This study is to estimate and compare hedging effectiveness in emerging currency and advanced currency futures markets. Emerging currency futures includes Korea won, Mexico peso, and Brazil real and advanced currency futures is Europe euro, British pound, and Japan yen. Hedging effectiveness is measured by comparing hedging performance of the naive hedge model, OLS model, error correction model and constant condintional correlation bivariate GARCH(1, 1) hedge model based on rolling windows. Analysis data is used daily spot and futures rates from January, 2, 2001 to March. 10, 2006. The empirical results are summarized as follows : First, irrespective of hedging period and model, hedging using Korea won/dollar futures reduces spot rate's volatility risk by 97%. Second, Korea won/dollar futures market produces the best hedging performance in emerging and advanced currency futures markets, i.e. Mexico peso, Brazil real, Europe euro, British pound, and Japan yen. Third, there are no difference of hedging effectiveness among hedging models.

  • PDF

Effects of Investors' Sentiment on Commodity Futures Prices (투자자 심리가 상품선물가격에 미치는 영향)

  • Lee, Hyun-Bok;Park, Cheol-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.383-391
    • /
    • 2017
  • This study examines the relationship between sentiment of speculators and price movements in the futures markets of WTI crude oil, copper, and wheat during the period 2003~2014 using Granger causality tests. The results indicate that speculative positions overall has no predictive power for returns in each futures market. Rather, returns seem to have effects on speculators' sentiment especially during periods of both economic expansion and recovery. During a recession, meanwhile, changes of speculators' sentiment index in the WTI crude oil and copper markets provide predictive power for returns in a positive direction, suggesting that speculators' pessimistic sentiment aggravates declines in commodity prices. Since the effects of speculative positions on market prices are ambiguous, tight regulations on speculative trading are not advisable. In a bearish market, however, regulatory bodies should consider raising speculative position limits because large speculative short positions and (or) liquidation of index traders' long positions may lead steep price declines.

A study on asset management investment strategy model by trade probability control on futures market (선물시장에서 거래확률 조정을 통한 자산운용 투자전략 모델에 관한 연구)

  • Lee, Suk-Jun;Kim, Ji-Hyun;Jeong, Suk-Jae
    • Management & Information Systems Review
    • /
    • v.31 no.3
    • /
    • pp.21-46
    • /
    • 2012
  • This paper attempts to offer an effective strategy of hedge fund based on trade probability control in the futures market. By using various technical indicators, we create an association rule and transforms it into a trading rule to be used as an investment strategy. Association rules are made by the combination of various technical indicators and the range of individual indicator value. Adjustments of trade probabilities are performed by depending on the rule combinations and it can be utilized to establish an effective investment strategy onto the risk management. In order to demonstrate the superiority of the investment strategy proposed, we analyzed a profitability using the futures index based on KOSPI200. Experiments results show that our proposed strategy could effectively manage and response the dynamics investment risks.

  • PDF

Conceptual Framework for Pattern-Based Real-Time Trading System using Genetic Algorithm (유전알고리즘 활용한 실시간 패턴 트레이딩 시스템 프레임워크)

  • Lee, Suk-Jun;Jeong, Suk-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The aim of this study is to design an intelligent pattern-based real-time trading system (PRTS) using rough set analysis of technical indicators, dynamic time warping (DTW), and genetic algorithm in stock futures market. Rough set is well known as a data-mining tool for extracting trading rules from huge data sets such as real-time data sets, and a technical indicator is used for the construction of the data sets. To measure similarity of patterns, DTW is used over a given period. Through an empirical study, we identify the ideal performances that were profitable in various market conditions.

Technical Trading Rules for Bitcoin Futures (비트코인 선물의 기술적 거래 규칙)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.94-103
    • /
    • 2021
  • This study aims to propose technical trading rules for Bitcoin futures and empirically analyze investment performance. Investment strategies include standard trading rules such as VMA, TRB, FR, MACD, RSI, BB, using Bitcoin futures daily data from December 18, 2017 to March 31, 2021. The trend-following rules showed higher investment performance than the comparative strategy B&H. Compared to KOSPI200 index futures, Bitcoin futures investment performance was higher. In particular, the investment performance has increased significantly in Sortino Ratio, which reflects downside risk. This study can find academic significance in that it is the first attempt to systematically analyze the investment performance of standard technical trading rules of Bitcoin futures. In future research, it is necessary to improve investment performance through the use of deep learning models or machine learning models to predict the price of Bitcoin futures.