• Title/Summary/Keyword: Future water demand change

Search Result 61, Processing Time 0.029 seconds

Modeling Future Yield and Irrigation Demand of Rice Paddy in Korea (우리나라 미래의 논 벼 생산량과 관개요구량 모델링)

  • Nkomozepi, Temba;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • 기후변화에 따른 기온상승과 강우패턴의 변화에 의한 농업의 취약성에 대한 연구는 주요 관심분야이다. 본 연구에서 기후변화가 한국의 2021~2040 (2030s), 2051~2070 (2060s) 및 2081~2100 (2090s)의 벼의 생산량과 관개요구량에 미치는 영향을 모의발생하여 분석 하였다. 세 가지 대표농도경로 (Representative Concentration Pathways: RCPs)에 대한 12개의 전지구 기후모형이 추정한 기후자료로부터 미래의 작물 물 요구량, 유효강우량, 관개요구량을 물수지 방법으로 계산하였다. Water Accounting Rice Model (WARM) 벼 작물모형을 보정하여 벼 생산량 추정에 이용하였다. 벼 생산량은 금세기 말에는 최대 40 %까지 감소하는 것으로 나타났다. 생산량은 특히 경남과 충남지방에서 크게 증가하는 것으로 나타났다. 생산량과 관개요구량의 시공간적인 불확실성을 분석한 바, 경북과 전남에서 2090s, RCP8.5때 불확실성이 가장 큰 것으로 나타났다. 미래에 일부 지역은 벼농사에 적합하지 않을 수도 있을 것으로 추정되었으며 기후변화 대응방안에 대한 연구가 필요할 것으로 판단된다.

Priority Analysis for Agricultural Water Governance Components by Using Analytic Network Process(ANP) (ANP 기법 활용 농업용수 거버넌스 구성요인 우선순위 분석)

  • Lee, Seulgi;Choi, Kyung-Sook
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Recently, worldwide to respond to climate change and secure sustainability. Korea aimed to increase water use efficiency by implementing integrated management according to the water management unification policy. Therefore, the necessity of establishing and operating governance is expanding to ensure the sustainability of agricultural water. In this study aims to evaluate the importance of agricultural water governance components and provide essential data for the participation of stakeholders in the efficient use of agricultural water in Korea. For this study, a total of 19 respondents to the ANP survey for this study were composed of experts in agricultural water and governance in Korea. As a result, the ranking for the main components was in the order of law, policy, and systems(0.222), core subjects(0.191), information sharing and communication(0.180), budget support(0.178), mutual learning(0.124), and external experts(0.105). The most important components for the operation of agricultural water governance are laws, policies, and systems. Since Korea's agricultural water management is a public management system, national standards are considered the first priority. This study, which is the purpose of the agricultural water governance model, evaluated the importance of the constituent components for participating in demand management with a sense of responsibility. Moreover, if agricultural water governance is expanded nationwide by reflecting agricultural and water resource policies in the future, it is believed that positive effects can be achieved in increasing utilization efficiency and securing sustainability through agricultural water saving.

A Study on Changes of Apartment Landscapes (아파트 조경의 변화에 관한 연구)

  • Kim, Do-Hee;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.75-90
    • /
    • 2010
  • The purpose of this study is to identify landscaping costs for apartment landscapes, landscape facility factors, and the transition of spatial composition for landscapes. In addition, based on the questionnaires and analysis results for workers in related fields such as landscape design companies and construction companies, this study aimed at acquiring results for the development of current apartment landscapes and directions for improvement in the future. Through the results, it aimed at providing basic data for apartment landscapes in the future. Results showed that there was approximately a 2.6 times increase for landscaping expenses of actual apartment landscapes, and a 7.0 to 11.5 times increase in the future can be expected. The cause of such increase is the continuously growing demand for a more pleasant environment. Landscape facilities factors have been diversified, and most facilities are used as multi-purpose spaces rather than serving simple facilities. Questionnaires and field investigations showed that water facilities underwent the biggest changes, and the cause for such changes were found to be the introduction of new facilities such as water facilities and environmental structures, as well as the creation of integrated functions and spaces. Spatial composition for landscapes showed that multi-purpose spaces were established, and for the apartment differentiation strategy, there were many different changes such as theming of green areas and places for exchange among residents. For changes, the most changes were in green areas, and studies also showed that there were many changes for rest areas as well. The cause for such change is judged to have been brought about by the increase of landscape space by placing parking areas underground, and investigations showed that compared to green areas composed of large grass patches, recent apartments are establishing diverse and experience-based green areas.

Evaluation and comparison of water balance and budget forecasts considering the domestic and industrial water usage pattern (생활 및 공업용수 물이용 패턴을 고려한 물수급 전망 비교 및 고찰)

  • Oh, Ji Hwan;Lim, Dong Jin;Kim, In Kyu;Shin, Jung Bum;Ryu, Ji Seong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.941-953
    • /
    • 2022
  • In this study, monthly water use data were collected for 5 years from the 65 local governments included in the Han-river basin and a typical water usage ratios and patterns were calculated. The difference in water shortage was compared by considering the water usage patterns using the water balance and budget analysis model (MODSIM) and data base. As a result, it was confirmed that the change occurred in the range of -3.120% to +4.322% compared to the monthly constant ratio by period. In addition, when applying the patterns in the water balance model, 17 of the 28 middle watershed showed changes in the quantity of water shortage and the domestic and industrial water shortage would decrease about 8.0% during the maximum drought period. If it is applied in conjunction with predictive research on water usage patterns reflecting climate change, social and regional characteristics in the future, it will be possible to establish a more realistic water supply forecasts and a reliable national water resources plan.

The Economic Impacts of Subsidizing Water Industry Under Greenhouse Gases Mitigation Policy in Korea: A CGE Modeling Approach (국가 온실가스 저감정책과 물산업 지원의 경제적 영향 분석 - 연산일반균형모형 분석)

  • Kim, Jae Joon;Park, Sung Je
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1201-1211
    • /
    • 2012
  • This paper constructed the single country sequential dynamic CGE model to analyze the economic impacts of subsidizing water industry under the GHG emission abatement policy in Korea. We introduced the carbon tax to reduce the GHG emission and made two scenarios. One is to transfer the total tax revenue to household. The other is to mix the tax transfer and water industry support. Our Simulation results show that the macroeconomic effects might be positive by subsidizing water industry compared with the pure tax transfer. However, the support of water industry doesn't contribute to head for the non-energy intensive economy because it's economic activity highly depend on fossil energy and energy intensive products as intermediate demand. This means that it is important to make efforts on the cost effective measures such as energy technology progress, alternative energy development, and energy efficiency improvement in water industry against climate change policy.

A Study on Modeling of Watering Control status by Regions Using the Measurement Device of the Ministry of Root Environment (근권 환경부 측정장치를 이용한 지역별 관수제어 모델링 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 2021
  • According to the World Agricultural Productivity Report, the current annual average growth rate of agriculture is 1.63%, which is lower than 1.73% to support the world's 10 billion people, which is growing by 2050. The demand for food, feed, and bioenergy is not growing enough to continue to meet the demand, and it is predicting a future food shortage. The purpose of this study was to create a regional irrigation control model for the purpose of reducing the production cost of crops, increasing production, and improving quality, and presenting a model that can give advice to farmers who start farming in the region. The irrigation control modeling presented in this study means to represent the change of medium weight·supply liquid·drainage amount due to changes in the root zone environment according to the passage of time and climate in a graph model. For water control modeling, we collected data on the change in the amount of the root zone environment and the weight of the badge·supply amount·drainage amount from March to June in Nonsan, Buyeo, and Yesan regions in Chungnam Province through the measuring device of the Ministry of Environment in the root region. We set up the parameters for derivation and derived an irrigation control model that can confirm the change in weight·supply liquid·drainage amount over time through the parameters.

Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables (생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석)

  • Kim, Min Ji;Park, Sung Min;Lee, Kyungju;So, Byung-Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • Min, Hyeong-Seop;Jeong, Myeong-Seon;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF